Available online at www.sciencedirect.com

SCIENCE DIRECT® JOURNAL OF
@ Approximation
Rl Theory
ELSEVIER Journal of Approximation Theory 137 (2005) 57—88

www.elsevier.com/locate/jat

Christoffel type functions fom-orthogonal
polynomials

Ying Guang Shit
Department of Mathematics, Hunan Normal University, Changsha, Hunan, PR China
Received 5 September 2004; accepted 15 July 2005

Communicated by Paul Nevai
Available online 19 September 2005

Abstract

The complete extension of the Christoffel type functions tontherthogonal polynomials is established.
The properties of the Christoffel type functions are investigated. The estimations and asymptotics of the
Christoffel type functions for some weights including a generalized Jacobi weight are also given.
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1. Introduction and definition

We denote byN, Ng, N1, or Ny the set of positive, nonnegative, odd integers, or even integers,
respectively. We also denote Bythe set of real numbers.

Let 1 be a nondecreasing function &with infinitely many points of increase such that all
moments of/u are finite. We calliu a measure. Ift happens to be absolutely continuous then we
will usually write w instead ofu’ and will call w a weight. The support afu is the set of points
of increase ofu(x) and the smallest interval containing it is denotedAfyu). The symbolPy
stands for the set of algebraic polynomials of degree at Moshe symbob P denotes the exact
degree of the polynomia # 0,i.e.,P € P;p \ Pyp_;.
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We denote by, c1, . .. positive constants independent of variables and indices, unless otherwise
indicated; their value may be different at different occurrences, even in subsequent formulas. We
write a,, ~ b, if c1<a, /b, <c2 holds for everyn. The notationa(x) ~ b(x) anda, (x) ~ b, (x)
have similar meaning.

Throughout this paperlet € N m>2), M1 = {j<m —3: m — j € N1}, andM, =
{(j<m—2:m—jeNo}.PutPy, ={Px) =c(x—y1)---(x—y): ¢, y1,..., ¥ € R, r<N}
andPy (x) = {P € Py : P(x) = 1} for x € R. We agree’; = Po.

We define than-monic orthogonal polynomials

P,(du,m;x)=x"+---, n=0,1,...,
for which
/‘R|P,,(du,m;x)|mdu(x): (m"',}+ / [P ()" du(x). (1.1)

If ' = wis a weight then we will usually writ@, (w, m; x) instead ofP, (du, m; x). According
to Theorem 4 irf2] (see also Theorem 2.2 here) xjf = xi,, (du, m) with

X1 < X2 < -+ <Xp (1.2)

are the zeros of, (du, m; x) then the Gaussian quadrature formula

n m—2

/R FC)SgN Py (dp, ms )" dp(x) =y Y g 9 () (1.3)

k=1 j=0

is exact for allf € P,,,_1, where theChristoffel numberd,; are given by

Jkj = Akjn(du, m) = /R A (x)sgn P, (du, m; x)™ du(x) (1.4)
andAy; € P,,—1 are the fundamental polynomials of Hermite interpolation, which satisfy
A,((j’)(xq) =0kg0jp, Jop=01,....m—=1, k,g=1,2,....n

As we know, orthogonal polynomials (== 2) have a long history of study and a classical
theory. One of the important contents of this theory areGhastoffel functions

I (di; x) = min P()%du(t), 15
o=, min [ Pw?duo (L5)

which are closely related to tlghristoffel numbers
Jkn(Ap) = Zp(dp; xpn(dw)), k=1,2,...,n

Here we accept the notatiaP, (du) = P,(du, 2), xp,(du) = xpn(du, 2), etc. The study and
applications of the Christoffel functions can be foundih

For the case whem € N2 andj € M the author in [8] defines the Christoffel type functions
Zjn(dp, m; x), which are the extension of, (du; x) to the m-orthogonal polynomials, and in
[10,11] gives estimations and asymptoticsgf (i, m; x) for a weightu ~ W for this case,
whereW is a generalized Jacobi weight. In this paper, we shall establish a complete extension of
the Christoffel type functions to thra-orthogonal polynomials for amy > 2 andj <m — 2 in this
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section and further study their properties in Section 2. In Section 3, we shall give the estimations
and asymptotics of the Christoffel type functions for some weights including a generalized Jacobi
weight.

Given afixed poink € R, anindexj, 0<j<m—2,andn € N,for P € P,y with P(x) =1
let the polynomial

AJ(P, X, t) = Ajnm(P,x;t):Tl!(t—x)ij(P,x;t)P(t)m (16)
with B;(P, x; -) € P,,_;_» satisfy the condition
AP xix) =0, i=01,....m—2 (1.7)

Itis easy to see that ; (P, x; t) must exist and be unique.

Definition 1.1. The Christoffel type functior ;, (du, m; x) with respect taiu is defined by

Ajn(dp,m; x) = inf / Aj(P,x;1)sgn[(r — x) P ()] du(t) (1.8)
PePr  (» JR
for j € M2 and by
Zjn(du, m; x) = /R Aj(P,x;)sgn[(t — x)P(H)]" du(t) (1.9)

for j € M1, where the polynomidP in (1.9) is the solution of (1.8) in the case wher M.

Remark 1.1. We shall see thatthere is a unique polynonfia P, (x) suchthat Eq. (1.8) holds
for everyj € M, (Theorem 2.1). So the definition @f, (du, m; x) for j € My is reasonable.

Remark 1.2. It is particularly simple to determing;1(du, m; x): in this case we have that
P;(x) = {1}, A;(P,x;t) = (t —x)//j!, and

Jja(du, m; x) = ]—1' fR(r —x)/sgn(r — x)™ du(r).
So in what follows we always assume: 2.
2. Properties
The expression and the main properties of the polynomjaP, x; 1) are as follows.

Lemma 2.1. We have

m—j—2
Bi(P,x;t)= Y bi(t—x), (2.1)
i=0
where
1 —m .
bi=bi(P.x) =[P i=01.... (2.2)

Moreoverfor P € P;_,(x) andj € M2

bnu—j—2>0, Bj(P,x;t)>0, teR. (2.3)
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Proof. If we rewrite (1.6) in the form

1 .
Aj(P,x;H)P(t)™" = F(l —x)Bj(P, x; 1)
1m—j—2
== > b0,
J: i=0

using (1.7) we can examine (2.2). To prove (2.3) it suffices to apply (2.24) in [9], 8B\, x; -)

=m—j—2eN,. O

Remark 2.1. By (2.3) we see that the integrand in (1.8) is nonnegativg ferM ,:
Aj(P,x;)sgnl(t — x) P(O]" = |A; (P, x; 1)].

Remark 2.2. For m >3 the restrictionP € P;_;(x) cannot be replaced by the conditiéghe
P,—1 with P(x) = 1 used in the case whem = 2, for otherwise the function;,, (du, m; x) =
—o0 may occur. For example chooge= 3, m =4, x = 0,andP(r) = 1+ dtzl (d >0).Bya
simple calculation we see

[P(1)~% = —8dt(1 + dt?) >,
[P(1)™ = —8d (1 + dt?)™° + 80d?%*(1 + dr?) 5,
bo=1, by =0, by = —4d
and
Ao(P,0: 1) = (1 — 4dt?) (1 + dt®*.

It is easy to see that for any measdye

lim / Ao(P, 0; 1) du(t) = —oo.
R

d— o0

Remark 2.3. The definition (1.8) is not suitable fgre M 1. For example fom € Np, j = m—3,
and

—2<x1<xp<--<xp_1<x=-1,
we have
n—1 f— x:
Ap—3(P,x;1) =[1+b1(t —0)IP(®)", P) = l_[ -
ie1 X — X
Since by Lemma 2.2 i{9)]
n—1 m m
b = = < 9
1= dn ;xi —X Xp_1—X
we have
t— fo —t
Am-3(P,x; 1)< [1+ u] pay =" "D poyn i er-1.1),
Xp—1—X X — Xp-1
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Then

1
f Ap_a(P. x: 1) dyu(t)
-1

m

10 1
<" [ / 0= 0P dut) - f (t — 1) P(1)" du(t)]
- 1

B
X — Xp-1 0

XX
X — Xp-1

m 10 1
<" |:P(to)m f (0= du(t) = P1o)" / (t—to)du(t)]
_ to

Thus asx,_1 — x we havefp — —1 and hence

1
lim / Ap—3(P, x;t)du(t) = —oo.
-1

Xp—1—>X

This shows that the definition (1.8) is not suitable for this case.
Let

P,ty=Pt)+ At —x)Q(t), PeP;_1(x), QeP,2

and putf(4;t) = Aj(P;,x;t) andg(4; 1) = B;j(P;, x;t). The pair(P, Q) is said to satisfy
Condition A if there is a numbes > 0 such that the relatio®; € P;_,(x) holds for every
4 €10, 9].

Lemma 2.2. Letdu be a measure oR. For a fixed pointx € R and a fixed indey € M let a
polynomialP € P} _, (x) satisfy the equation

/R Aj(P,x;)sgn((t — x) P(D)]" du(t) = Ajn(dp, m; x). (2.4)
If the pair (P, Q) satisfies Condition Ahen

/R[(l —X)P(O)]" q(1)sgn[(t — x) P()]" du(t) >0, (2.5)
where

q(t) = (t — )7 " (O ) P (1) + m(t — x)g(0; ) Q(1)] (2.6)
and

q € Praxor—1.00) (2.7)

Proof. The lemmawithn € Nz is justLemma 2 irj8]. By the same argument as that of Lemma 2
in [8] we can prove our lemma with € N;. We omit the details. O

Lemma 2.3. Letdu be a measure oR. Leta pointx € R be fixed and j M». Then there exists
a polynomialP € P;_, (x) such that relatior(2.4) holds.
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Moreover if a polynomialP € P;_, (x) is a solution 0f(2.4),then

(a) the zeros of the polynomial P are distinct,
(b) OP>n — 2,
(c) the polynomial P satisfies the orthogonality relation:

/R [(t — x)P(O]" Lq()sgnl(t — x) P()™ du(t) =0, Vg € Py_o. (2.8)

Proof. There is a gap in the proof of the same lemma witk N> (Lemma 3) in[8]; so we give
a correct and complete proof here.

To prove the first part of the lemma assume that the polynontigls P;_;(x), N = 1,2,.
satisfy

lim /Aj(PNJC;t)Sgn[(f_x)PN(t)]mdﬂ(t):/Abjn(d,uvm§x)-

N—oo JR

Then (see Remark 2.1)
/ |A;(Pn,x;t)|du(t)<c < +oo, VN eN.
R

Write
mn—2

Aj(Py,x;t) = Z athk.
k=0

By theorem of equivalent norms of finite-dimensional spaces the previous inequalities imply that
lagn|<c1 < +o00, k=0,1,...,mn—2, VN eN.

According to Bolzano—Weierstrass theorem, by passing to a subsequence if necessary, we may
suppose thaPy — P (N — oo). ThenP € P;_,(x) and relation (2.4) holds.
Let us prove the second part of the lemma.

Assume
Tt =t \ P

P(0) =k]:[1(x _tk> :
where—oco <ty <fp <--- <t, <+00, p1, p2,..., pr € N. We claim that

/ G t)n_ :P(’)m sgni(t — ) PO du(t) =0, k=1,2,....r: (2.9)
further if 0P <n — 2 then the additional equation

/;e(t — x)”"lP(t)’"sgn[(t —x)P0)]"du(r) =0 (2.10)
holds.

To prove (2.9) choos®(r) = £P()/(t — 1), 1<k<r, for which the pairn P, Q) obviously
satisfies Condition A. In this case relation (2.6) is of the form

q(t) = C(HQ ), (2.11)
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where the function
C(t) = (t — x)7 " mg(0; )t — x) + g5(0; ) (t — 10)]

is a polynomial int, because the functiorg Q, and the function in the bracket are polynomials
int, andQ(x) # 0. The relation (2.7) showd; <00 and hence(t) = C. This constanC is
not zero, since by (2.3)

C = C(t) = mg(0; i) (tx — x)/ "2 = mBj(P, x; 1) (tx — x) "% > 0.

Substitutingg into (2.5), we obtain (2.9).
Similarly, to prove (2.10) choos@(¢) = +P(¢), for which the pair P, Q) obviously satisfies
Condition A. In this case relation (2.11) holds, where the function

C) = —x)/ " mg(0; )t — x) + g;(0; 1]

is also a constant by the same argument as above. To determine this constant we observe that
08,0 )<m —j—2<m—j—1=0g0;)(- —x)]

and hence by (2.3)
C)y=C=1lim C(t) =mby_j_>0.

—>0o0
Substituting thigy into (2.5), we obtain (2.10).
(a) Suppose to the contrary that > 1 holds for some, 1<k<r. ChooseQ(t) = —(t —

x)P(t)/(t — 1), for which the pair P, Q) obviously satisfies Condition A. In this case by (2.6)
we can writeg in the form

B P(1)
where the function
C(t) = (t — )" g, (0; 1)(r — 10)* — mg(0; 1)(t — x)?]

is a polynomial int by the same reason as above. The relation (2.7) skigwsdQ and hence
0C < 1. Thus we may write the linear functi@in the formC(t) = C1(t — x) + C2(t — ). TO
determine the sign of the constait we use (2.3) to get

C(n)
th —x
Then by (2.12) and (2.9)

/ [t = x) P(1)]" " Yq(1)sgn[(t — x) P()]" du(1)

C1= = —mg(0; 1) (tx — x)I "2 = —mB; (P, x; ) (t — x)! "2 < 0.

e f [ — x)f’)(;) sgn[(t — x) P(1)]" du(t)

_\m lP m
+Cz [ . P sgnic — )P0 dut)

| —x)P@®)|"
= d 0
=C1 / = )2 u(t) <
contradicting (2.5). This proves statement (a).
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(b) Suppose not and IétP < n — 2. ChooseQ(r) = —(t — x) P(¢), which belongs td>,_»
and for which the pai¢P, Q) obviously satisfies Condition A. In the present case by (2.6) we get
q(t) = C(t)P(t), where

C(t) = (t —x)? 7" g} (0; 1) — mg(0; 1)(r — x)?].

Again we concludéC <1 and we may write the linear functiddin the formC(t) = C1(t —
x) + Co. To determine the sign of the constahitwe observe that

0g5(0; ) <m — j —2<m— j = d[(- — x)°g(0; )]
and hence by (2.3)

. C(t
C1= lim @) =-—mby_j 2 <O0.
t—o00 f — X

By (2.10) this leads to a contradiction
fR [t — x)P(O]" g (1)sgn[(t — x) P(1)]™ dpu(t)
=C1 /R |t = x) P ()" du(t)
+Co fR (t — x)"LP(1)"sgn[(t — x) P(O)]" du(t)

_ clfR (=) P(O)I" dut) <O

and proves statement (b).
(c) If r = n — 1 then relation (2.9) means (2.8), since the set

{P®)/(t —11), ..., P()/(t — ty—1)}

spans the spade, _»; if r = n — 2 then relations (2.9) and (2.10) imply (2.8), since the set
{P®)/(t —11), ..., P()/(t — 1,—2), P(1)}

again spans the spabg_». [

Now we can give the following two main results (Theore2uk and 2.2) in this section, which
are direct extensions of the corresponding results for orthogonal polynomials.

Theorem 2.1. Letdu be a measure oR and letx € R be fixed.

(a) There exists a unique polynomi&le Py, (x) such thai(2.4) holds for everyj € M.
(b) 0P >n — 2 and the zeros of the polynomial P are distinct.

(c) Eq.(2.4)is true if and only if the orthogonality relatio2.8) holds.

(d) We have

. 1
min _
QeP,_1,0(x)=1 (m - 2)'

></R 1QI™ |t — x "2 du(r). (2.13)

)Lm—Z,n (d,u, m;x) =



Y.G. Shi/ Journal of Approximation Theory 137 (2005) 5788 65

Proof. We begin by showing statement (d). To this end introducerihe 1)-dimensional space

Gy ={t—-x)0(): QePy2} (2.14)

Let us consider the extremal problem: to fiRde P,,_; such thatP (x) = 1 and
Pt — x|" 2 du(t) = / O™t — x| 2 du(t 2.15
/RI ®1" | u(t) QP“Q(X)l Q@[ — x| (). ( )
It is easy to see that relation (2.15) is true if and onlR i 1 — P (e G,) satisfies the equation
/ 1= ROt — x|" 2 du(r) = min f 11— Q)™ |t — x|" 2 du(r). (2.16)
R 0€Gy JR

But this is a problem of.,, approximation to the function 1 with respect to the measure
x|"=2 du(t) from the(n — 1)-dimentional subspacg, . By [14, Corollary 2.2, p. 98, Corollary 3.5,
p. 111, Theorem 1.11, p. 56] we conclude that thereaiisiquefunctionR € G, satisfying (2.16)
and further relation (2.16) holds if and only if

/ [1— RO gt — x|mfzsgn[1 — R®1"du() =0, Vq € Gy. (2.17)
R

RecallingR = 1 — P, relation (2.17) is equivalent to (2.8). This means by (2.14) that there is a
uniguepolynomial P € P,_1 with P(x) = 1 satisfying (2.15) and further relation (2.15) holds if
and only if (2.8) is valid. The orthogonality relation (2.8) shows that the polynognialx) P(¢)

in t changes sign at least— 1 times and hencé (r) changes sign at least— 2 times. But

P e P,_1. So Phas distinct real zeros only and henkes P;_,(x). By (1.6), (2.1), and (2.2)

we see

. _ 1 _ \m=2 m
An-2(P.x;0) = o man (= )" 2P (2.18)

This proves Statements (d).

Meanwhile, we have proved that the solution of the orthogonality relation (2uB)idgie. By
Lemma 2.3 statements (a)—(c) followd

As an immediate consequence of Theorem 2.1 we state

Corollary 2.1. Letdube a measure oR and letP € P,,_; with P(x) = 1satisfy(2.8)or (2.15).
Then the relatior{1.9) holds for everyj = 0,1, ..., m — 2.

Remark 2.5. Corollary2.1 provides an alternative definition &f, (du, m; x).

Corollary 2.2. Letdu be a measure oR. We have

Aon(dp, 2; x) = Ay (dp; x). (2.19)

Corollary 2.3. Letdu be a measure oR. If P € Pr_, (x) satisfieg2.4)then the interval (du)
contains at least — 2 zeros of P.

Proof. Suppose to the contrary that the intervgldu) containsr(<n — 3) zeros ofP, say,
f,....t.Forq(t)= (t —x)(t —11) - - - (t —t,) we see that the polynomiglt — x) P ()" 1¢(t)
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does not change sign ifi(du), which implies that its integral oveR is not zero, contradicting
(2.8). O

The second main result in this section is the following

Theorem 2.2. Letdu be a measure oR and let a polynomiaP e P;_, (x) have the form

op
Piy=c[e—t)., n<m<- <. (2.20)
i=1

Then the following statements are equivalent:

(a) The polynomial P satisfig®.4)for j € M».
(b) The polynomial P satisfies the orthogonality relat(@:8).
(c) We have the Gaussian quadrature formula

0P m—2

/R FOsgni — ) PO du(t) =Y >~ cj fV @) (2.21)

k=0 j=0
exactforall f € P, _1yp11)4n—2 Whererg = x and
Ajn(dp, m; x) =coj, j=0,1,....m—2 (2.22)

(d) The polynomial P satisfig®2.15).

Proof. (a) < (b). Use Theorem 2.1(c).

(b) < (c). We separate the cases whigh=n — 1 andoP =n — 2.

Casel: 0P = n — 1. Inthis case le#l;; € P,,,—2 be the fundamental polynomials of Hermite
interpolation at the nodeg, 11, . . ., #,—1 with the corresponding multiplicity.g = m — 1, m1 =
-+ =myu_1 =m. Thenforf € P,,_»

oP mp—1

FO =" fP)AG ). (2.23)

k=0 j=0
Multiplying this with sgn[(z — x) P(¢)]"* and then integrating the obtained formula, we have

0P mp—1

/ fF@sgnl —x) PO du@) =Y Y exj S w0, (2.24)
R k=0 j=0
where
e = /R A (SNt — ) P(OT" du(r). (2.25)

The formula (2.24) becomes (2.21) if and only if

Chmp—1 = Ckm-1=0, k=0,1,...,0P. (2.26)
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Since
1

(m — D! — x)" 1P ()"
x[(t — x)P(t)]mflﬂ, k=1,2,...,n—1,
t— 1

Ak,m—l(t) =

relation (2.26) is equivalent to (2.8).

Case2: 0P = n — 2. In this case we have to consider the generalized Gaussian quadrature
formula at the nodes, 11, .. ., #,—2 with the corresponding multiplicityng = m1 = --- =
my_2 = m. By Lemma 2.3 in [13] relation (2.21) holds for &fl € P,,(,—1)—1 if and only if the
orthogonality relation (2.8) is valid.

(b) < (d). Apply Theorem 2.1(c) and (d).(0

The relationship between the Christoffel type functions and the Christoffel numbers is given
as follows.

Theorem 2.3. Letdu be a measure oR and for any pointc € R let P(x; -) € P;_;(x) satisfy
(2.8).Letxy, = xpn(dp, m).

(&) We have
Ajn(dpt, m) = [sQN P, (dp, m; xn)™ 12 jn (di, m; Xip),
k=21,2,....,n, j=01,...,m—2. (2.27)
(b) We have
P(xgn; 1) = Lip (dp, m; 1) = P,;(duf);(;di:nn)l(’;)— oy’ k=1,2,...,n. (2.28)
(c) We have
P(xkn-151) = Lgn—1(dp, m; 1)

Po1(d, m:
- n—1(djt, m; £) k=12 ....n—1 (2.29)

Py (dp, m: xgn—1) (X — X p—1)

(d) The equalitypP (x; -) = n — 2is true if and only if equalit = xi ,—1 holds for some index
k, 1<k<n —1.

Proof. (a) Let anindex, 1<k <n, be fixed. We notice that the polynomiBj (du, m) satisfies
the orthogonality relation by Lemma 2.3[ih3]

fR Py(dy, m; )" 1q(t)sgn P, (du, m; )" du(t) = 0, Vg € P,_1, (2.30)
or equivalently

/R [(t = x0a) P(O]" g (1)SANL(t — x10) P()]" da(t) =0, Vg € Py, (2.31)
whereP (t) = £, (du, m; t). According to Theoren2.1 Eq. (2.31) means

Dt Xp) = /R A (P, x4 )SGNL(E — x0) PO i),
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Inserting f (1) = A; (P, xi,; t) into (1.3) and using the above relation, we obtain

Hajn (s m) = /R A (P, xms SN Py (dits m: 1" du(r)

= [sgn P, (du, m; xgn)" ] /R Aj (P, Xpn; )SON[(t — xkn) P()]™ dpu(t)
= [sgNn P, (dy, m; xn)" 12 jn (dpt, m; Xin).

This proves (2.27).
(b) The relation (2.28) is a direct consequence of the above conclusion.
(c) To prove (2.29) we use (2.31) with replacingy n — 1

/R [t = ) POT"2q(SANI(t = xpn ) POT" du(t) =0, Vg € Po_z,

whereP (t) = €x n—1(du, m; t). This by Theoren2.1 means (2.29).

(d) We observe that by (2.29) equali®y’ (x; -) = n — 2 is true if equalityx = xi ,—1 holds
for some index, 1<k<n — 1. Conversely, if equality P (x; -) = n — 2 is true, then by (2.8)
the (n — 1)th polynomial(r — x) P (x; t) is them orthogonal polynomial with respect tn and
hence equality = x¢ ,—1 holds for some indek, 1<k<n—1. O

Lemma 2.4. LetdP = n, n—1<0Q<n, P # cQ,andp > —1.Then the following statements
are equivalent:
(a) the function

f(e,d, p;x) =c|P(x)|PP(x) +d|Q(x)|"Q(x) (2.32)

has at least — 1 sign changes for every nonzero péit d};
(b) both P and Q have simple real zeros ordpd the zeros of P and Q mutually separate each
other.

Proof. We separate the cases when= 0 andp # 0.
Casel: p =0.
(&) = (b). In this case we claim that the polynomial

f(c,d,0;x) =cP(x)+dQ(x)

has simple real zeros only for every nonzero paie/}, because it has at least- 1 sign changes
and its degree ia or n — 1. We observe that the polynomid?sandQ have no common zeros.
Suppose not and assume tifaty) = Q(y) = 0 for some numbey € R. Then the polynomial

FQ' (), =P'(»),0,x) = Q'(MPx) — P (»QX)

would have a zerg of multiplicity >2, a contradiction to the claim.

Further, letx;, &k = 1,2,...,n, in (1.2) be the zeros oP. We claim that each interval
Xk, xk+1), K = 0,1,...,n (xp = —00,x,41 = +00), cannot contain more than one zero
of Q. In fact, suppose to the contrary that the inteiwal x;11), 0<j<n, contains two zeros
of Q. Then we may choose a pdtit, d} so that the polynomiaf (c, d, O; x) has a zerqg of
multiplicity > 2, a contradiction to the claim.

By interchangingP and Q we can prove that each intervé, yx+1), k = 0,1,...,00,
cannot contain more than one zero®f wherey,, k = 1,2,...,00Q, are the zeros 0@
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and
—00=y0 <Y1 < < Y50 < Vog41 = T0.

Hence we conclude that between two consecutive zerBqof Q) we have exactly one zero of

Q (or P).
(b) = (a). This implication is trivial for the case wheh= 0. We treat the case whehz£ 0.
Assume thaP has the zeros (1.2). Since

fle.d 0y x) =d| Q)P Q(xx), k=1,2,....n

and

Q) Oxk+1) <0, k=1,2,...,n—-1,

the polynomialf (c, d, 0; x) has at least — 1 sign changes.
Case2: p # 0. In this case we claim that the inequality

F(x) =[Px)+ QIIPX)IPP(x) + Q)" Q(x)]1=0
holds for every poink. In fact, for a fixed poink, if | P(x)| > |Q(x)| or P(x) = Q(x)
sgN[P(x) + Q(x)] = sgn[|P(x)|” P (x) + |Q(x)|” Q(x)] = sgn[P (x)]

and hencéd ' (x) > 0; similarly, if | P(x)| < |Q(x)| or P(x) = —Q(x) thenF (x) >0. This proves
our claim.
With the help of this claim if we write

fle,d, p;)= ‘(Sgnc)|c|l/(ﬁ+l)P‘p [(Sgnc)|c|1/(P+l)P]
+ ‘(sgnd)|d|1/(P+1>Q‘p [(sgnd)|d|l/(p+l)Q]

we can conclude that the functigfic, d, p; -) with p # 0 has at least — 1 sign changes for
every nonzero paifc, d} if and only if the polynomial

Fsgne)leY PV (sgna)a M P o; )

has at least: — 1 sign changes for every nonzero péir d}, which is equivalent to that the
polynomialf(c, d, 0; -) = ¢P +dQ has at least — 1 sign changes for every nonzero paird}.
It remains to apply the conclusion of Case 1.

Theorem 2.4. Letdu be a measure oR and for any pointc € R let P(x; -) € P;_;(x) satisfy
(2.4)for j € Ma. If x # y then the zeros of the polynomidls— x) P(x; ¢t) and(t — y) P(y; 1)
are separatemore preciselybetween two consecutive zeros of the polynotialx) P (x; t) (or
(t — y)P(y; 1)) there is precisely one zero f — y) P(y; t) (or (t — x) P(x; t)).

In particular, if the polynomial P(x; -) has the form(2.20)and if x ¢ {x1,(du,m), ...,
xnn (du, m)}, then each open interval

(Xkn (dp, m), xpp1n(dp, m)),  k=1,2,....n—1,

contains precisely one point ¢f, 11, ..., 1;p}.
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Proof. By Theorem2.1

/R[(t —x)P(x:0)]"Yq()sgnl(t — x)P(x; 1)]" du(t) =0, Vg € P2
and

[l =P 0" @sanlc = )P O du(t) =0, Vg € Pz
Then for arbitrary numbersandd

/R {elt =) P(x; )" *sgnl(t — x) P(x; )]

—d[(t — y)P(y; D" sgnl(t — y) P(y; H]"}q(t) du(t) =0, Vg € P,_»
or equivalently

/ {el(t = x)P(x; )" 2(t — x) P(x; 1)
R

—d|(t — Y)P(y; DI"2(t — y) P(y; )}q(t) du(t) = 0, Vg € Py_s.

This shows that the term in the brace has at leasfl. sign changes for every nonzero piaird}.
Applying Lemma2.4 we obtain the first part of the theorem. The second one follows from the
first one and Theorem 2.3.0

Theorem 2.5. Letdu be a measure oR and for any pointc € R let P(x; -) € P;_, (x) satisfy
(2.4)for j € M2. Then bothP (x; ) and 4, (du, m; x) are continuous with respect to x.

Proof. To prove our theorem it is convenient to apply Theorem 2.2(d): the inequality

fR |P (x5 )™ |t — x|"™ 2 du(t) < /R Q)™ |t — x| 2 dut) (2.33)

holds for allQ € P,_; with Q(x) = 1. Letx — ¢ for some pointf and letQg € P,_1 with

Q0(&) = 1 be arbitrary. Pup(t) = Qo — x + &). Clearly Q(x) = 1 and inequality (2.33)
holds. Takingx — ¢ in this inequality, suppose, passing to a subsequence if necessary, that
P(x;-) — Py. Then

/R Pt — &2 du(t) < /R 100"t — &2 du(r).

SincePy(¢) = 1 andQq € P,_1 with Qo(¢) = 1 is arbitrary, by uniquenes® = P(¢; -). This
prove thatP (x; -) is continuous with respect ta Hencez;,(du, m; x) is also continuous with
respect tox. [

Lemma 2.5(Shi[12, Theorem 7.4, p. 162])Lety1 < yo < --- < y,, mz €N, k=1,2,...,n,
andN = ) }_; my —1.Denote byd;; € Py the fundamental polynomials of Hermite interpola-
tion at the nodess, yo, ..., y, with the corresponding multiplicityi, mo, ..., m,. f my — j €
Niandj <i < my, then

! L
|Aki(x>|<f—,d; I A(x)), x€R, (2.34)
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where

l:{Iyl—yzl, mz > 1,
ly1 — y3l, mg =1,
d, = { [V — Yn—1l, my—1 > 1,
[Yn — yn—2l, my—1 =1,
di = maxX{|yk — ye—1l, |yk — Ye+1l},  2<k<n —1.

71

We formulate two elementary results which are needed later. To this end for eabhlet

“l=xon<x1n <+ < Xpn SXng1n =1,

Xin = C0SOk,, O0<O0r,<m, k=01,...,n+1,

din = maX{|xgy — Xk—10ls [Xkn — Xkt10l}, k= 1.2,...,n,
and

1— 2\1/2 1
a2 1

A, (x) = 3

Lemma 2.6. The following statements are equivalent.
(&) We have

()kn_ekJrl,n\ﬂ, k=o,1,...,l’l.
n
(b) We have
Xk+1,n — Xkn <caN(xkn), k=0,1,...,n.

In addition, the following statements are equivalent.
(c) We have

Okn — 0k+1,n>2, k=0,1,...,n.
n
(d) We have
Xk+1n — Xkn =20, (Xkn), k=0,1,...,n.

Moreover,if inequality (2.35)is true then
din <cAy(xpn), k=1,2,...,m;
if inequality (2.37)is true then

din=>cAy(xkn), k=1,2,...,n.

Proof. Write

Xk4+1 — X = COSOk41 — COS Oy
Or —Oryr . O + Oy
k +1 gin k+l

=2si
Sin 5 5

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)
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We have the estimations from above

O —Okyr Ok — Okgn
sin <
n— 2

and

Or + 0 Or — 0
gin 2t k+1:sin<0k— k k+l>

2 2
= sin 0y cos% — cos 6y sin %
< sin O + 0 — Oky1.
Inserting these estimations into (2.41), we obtain
X1 — Xk < (O — Org1) (SN Op + Ok — Opy1). (2.42)

On the other hand, we have the estimations from below

. 0,—0 1
sin =2 > 20, — Op40),
2 T
040 1 1
sin = S 20 + O 1) > 20k + Ok — Ogs1)
2 T 2n
1 .
> P (sin Ox + O — Ok1) . Ok + Orp1<m
and
. 0k +0 1 1 .
sin =% > Z{(n— 0) + (1~ Or)] > [Sin( — 00) + (O — 0c41)]

1 .
= (SinOr + 0 — Or+1), Op + Ogy1 > 7.

Inserting these estimations into (2.41), we obtain

1 .
X+l = X > — (Ok = Ory1) (SIN O + Or — Ory1) - (2.43)

Then the equivalence of statements (a) and (b) as well as of statements (c) and (d) follows from
(2.42) and (2.43).

To prove the last part of the lemma by the same arguments as above we can obtain alternative
estimations

X — Xk—1 < (Ok—1 — O (SIN O + Or—1 — Op)
and
1 .
Xk — Xf—12 = (Ok—1— Ok) (SN O + Ok—1 — 1),

from which by (2.35), (2.37), (2.42), and (2.43) we obtain (2.39) and (2.40), respectively.
O
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Lemma 2.7. The following statements are equivalent.

(a) We have

%gekn—ekﬂ,n\cn—z, k=0.1,....n. (2.44)
(b) We have

3y (Xkn) <Xk 1n — Xkn <4l (Xkn), k=0,1,....n. (2.45)
(c) We have

es(1-23 )12 cp(1—2F) /2

n X1 — X0 <

65(1—x]fn)1/2
n

RN (2.46)
C (l—xzn)l/2
<Xk+l,n_xkn<6+, k=1,2,...,n.

Proof. (a) < (b) Apply Lemma2.6.
(b) <= (c) We observe that the relation

1 x2)1/2
xl_xO:]__’_xlr\/%

(1- x,%)l/z)

<0I’xn+1 —xp=1—x, ~
n

means thaty — xo ~ 1/n% (OF X411 — X, ~ 1/n%). This shows that relation (2.45) with
k = 0 (or k = n) is equivalent to relation (2.46) with = 0 (or k = n). Meanwhile for each
k, 1<k<n —1,

1— 2\1/2
An (-xk) ~ ﬁa
n
becausél — x,f)l/ 2> <. This proves the equivalence of statements (b) and (c).

Theorem 2.6. Letdu be a measure oR. Then forj € M2 andi > j we have the estimation

|in(dp, m; x)| < cd' ™ 2 (dp, m; x), (2.47)
where
max{|x — xk—1.nl, [Xx — Xk42,01}, X € [Xkn, Xkt1,0], 2<k<n — 2,
d=1q |x — x2ul, X< X1y, (2.48)
[x — xp—2.nl, X2 Xpn.

Further, if du is supported if—1, 1] and the condition
Okn — Oky1.n<c/n, k=0,1,...,n, (2.49)
is valid, wherexy, = cos0y,, 0< 0, <=, then
| Zin (dpt, m3 )| < A () ™7 2 (dpa, s ),
x € [=1, 1]\ [(x1n, x20) U (Xn—1,n5 Xnn)]- (2.50)

Proof. Let P € P;_,(x) satisfy (2.4) forj € M2, wherex € [xx,, Xk+1,4], 2<k<n — 2. By
Theorem 2.4 the interv@k;_1, x;) must contain a zero @1, sayy, and the intervalxyy1, xx+2]
must contain a zero &?, say,z. Then by (1.8), (1.9), and (2.34)

| in (du, m; x)| < c(max|x — yl, |x — zI}) ™ dju(du, m; x) <cd' ™ 1 ju (dp, m; x).
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If x <x1 then by Theoren2.4 the interval(—oo, x) contains no zero oP and the interval
(x1, x2] must contain a zero d?, sayy. Then by (1.8), (1.9), and (2.34)

in (@, m; )| <clx — yI ™ dju(du, m; x) <cd' ™7 2 ju(dp, m; x).

Similarly, if x > x, then we can obtain (2.47).
Relation (2.50) follows from (2.48) and (2.36)

Remark 2.6. Itisdifficultto give the estimation of;,, (du, m; x) forx € (x1,,, x2,)U(Xpn—1.1, Xnn),
because in this case the numbenay be large enough.
We state a useful result which is needed in the next section.
Theorem 2.7(Shi[8, Theorem 3]).Letdu be a measure oR. If m € N3 then
Jon (A, m5 X) 2= Aopns2(dp; X). (2.51)

3. Estimations and asymptotics

Lemma 3.1(Nevai[6, Lemma 6.3.8, p. 108])Letv(x) = (1 — x2)~1/2and

L () Th—1(t) — Ti1(x0) T (1)

K,(v,x;1t) = ., n=2. (3.1)
n(x —1t)
Then
1— x2)1/2 4 (1 — 2172
1K, (v, x: 1) <cmin {n d=x9 | +§| ) } X1 e[-1,1], (3.2)
X —
where c is an absolute constant.
Lemma 3.2(Freud[4, (3.7), p. 102; 104]).Let
Ky (v, x;1)
_1(xst) = ————.
Ttp—1(x; 1) K, (v.xix)
Then
|mp—1(x;0)|<4, n=3, x,te[-1,1], (3.3)
and
K,(v,x;x)~n, |x|<1. (3.4)

By [4, Theorem 3.1, p. 19] the polynomia}_1(x; 7) in t has simple real zeros only and hence
T-1(x;-) € Py _1(x). (3.5)
Lemma 3.3(Shi[10, Lemma 6]). We have

|bi (a—1(x; )5 )| <eAy ()™, |xI<1, i=0,1,.... (3.6)
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Theorem 3.1. Letdu be a measure supported ¢rl, 1] and satisfy

welipyy, 0<y<l. (3.7)
Thenforj € M,

Zjn(dp, m; x) <cn?MTA, ()2, (3.8)
Proof. Choose

P(x;1) = my_1(x;0).

Using the definition ofi;, (du, m; x) and applying (1.6) and (2.1), we obtain
Ajn(dp, m; x)

1
</llAj(nn71,x;t)|du(t)

= [ bimaxine =2 a0 | due)
—1| =0
By (3.6), (3.2), and (3.4)

m—j—2 1
<e Ap(x)™ / (¢ — %) T 1 (x; )™ dp(t)
m—j=2 ol J+i
c An(x)_lf

D du(t)

Ky(v, x; x)

m_'j_2 . . . 1 . .
<e Y A7 [ imat o duo), (3.9)
i=0 -1

We have to estimate the integral

1
Oq Zf |ty —1(x; )| du(), q=2.
1

We divide the integrab, into the three parts:

x+1/n x—=1/n
ay =/ |Tp—1(x; )| du(r) + / |Tp—1(x; )| dp(r)
x=1/n -1

1
T f 7263 D1 du(t)
x+1/n
=81+ 52+ 3.
It is simple to estimatéy, since by (3.3) and (3.7)

S§1<2% 7,
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If1+x <1/nthenS,; = 0; otherwise applying (3.2), (3.4), and (3.7), and using partial integration,
we obtain

x—=1/n
So < en1 / (x =)~ du(t)
-1

x—1/n
= Cn*"/ (x =) 1d[p(t) — p(x)]

-1

g | ) —u(=1) /H/" oyl
<cn { Arni +qgM 9 x—1 dt

< eMn | @+ )7+ qlq — 0t |
<cMn™7.
Similarly, if 1 — x <1/nthenS3 = 0; otherwise
Sa<cMn~7.
Thuse, <cn™’ and by (3.9) we obtain (3.8).J
Theorem 3.2. Letdu be a measure supported ¢rl,1]andj € M2. Then

lim Supn‘/+12jn (du, m; x) <cu' (x)(1 — x2)U+D/2 (3.10)

n—o0

holds for almost every € [—1, 1].

Proof. By (3.9) and (3.2)—(3.4)

Jjn(du, m; x)

m—j—2 1
<c Y A f |t = ) 1 (s 1) dpa(e)
i=0 -1
moit? 1 Ly iR
_— i [ Kn(v"x’ t)
< An i t — JHi | Znim et d
‘ ; ) /71( ) [Kn(v,x;x)] Ho
m—j—2
<c Z n A ()
i=0

1
xﬂ.n(v;x>/ [t — x) Ky (v, x5 D)7 K,y (v, x5 1) du(r)

—Jj-

<en/71 Z nA (x)

i=0
< (0 %) / [+ =A™ Ky, 0% ducy
-1
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m—j—2 i+j
Z I’lA (X) Z<l+]>(1 )S/Z

s=0

X Iy (V5 X) / Kn(v, x; 1)2(L — 12)TH=9/2 gy (1)
-1

or equivalently

m—j=2 it
nitL) Ajn(dp, m; x)<c Z [nA,,(x)]_l Z <l +J ) (1—x?)%/?

i=0 s=0

1
X I (V3 X) / K (v, x; )21 — 1292 g 1),
-1

Here we need a formula given by Nevai[6) Lemma 6.2.32, p. 93]

1
im 2, (v;x) | Kn(u,x;0)2du(t) = i (x)(1 — x?)Y2,

n— 00

which holds for almost every € [—1, 1]. Hence for almost every € [—1, 1]
lim Supnj+1ij,, (du, m; x)
n—oo
m—j—2

i+j /. .
Z _i Z 1+ i j—
<C (l— XZ) i/2 < i J ) (1_ x2)‘s‘/2(1_x2)(l+j 5)/2
i=0 s=0

i (1) (L= x?)12
el ()L —xHUHZ O

Lemma 3.4(Ullman[16, pp. 471-472]).Letdu be a measure supported ¢rl,1]. Then

lim 5, (dwY" =2 (3.11)
n—0oo
if and only if
) 1 1 (1 f(x)dx
im_ =3 f ) = % [ S (3.12)
n—oo n P nJ)_q 1— x2

holds for everyf € C[—1,1].

Lemma 3.5(Nevai[6, Lemma 5.1, p. 49]) Letdu be a measure with a compact support and let
f be continuous or(du) with the modulus of continuity. Then

n n—1
> o) = X [ £ Pt 0 o)
k=1 k=0

<non 13 [1 + %|A(d,u)|3:| (3.13)

holds forn > |A(dw)|~3, where|A(du)| denotes the length of the interv&ldu).



78 Y.G. Shi/ Journal of Approximation Theory 137 (2005) 5788

Lemma 3.6. Letdu be a measure supported r1, 1] and let relation(3.11)prevail. Then
lim supn, (dp; x) = 7 (x)(1 — x%)1/? (3.14)

n— 00

holds for almost every € [—1, 1].

Proof. Using the formula
-1

n—1
In(dp; x) = [Z Pe(dy; x)z} (3.15)

k=0

the inequality (3.13) becomes

n n—1
1 (x)
=N ) - Z/ ,deH(x)
n k=1 k=0 R n/“n( /'lv -x)
which, together with (3.12), implies that the relation
1 1
lim f _S® e Ef fx)dx (3.16)
n—00 J _1 niy(dy; x) TJ_1+/1—x2

holds for everyf € C[—1, 1]. Using one-sided approximation we conclude that relat8oh6)
remains true if is the characteristic function of an interval. Then by the same argument as that
of Theorem 6.2.54 in [6, pp. 104—105] we obtain that relation

<5w(n~3),

lim supn 2, (dp; x) = m (x) (1 — x%)1/2

n— 00

holds for almost every € [—1, 1]. By (3.10) we obtain (3.14). O

Remark 3.1. Lemma3.6 improves Theorems 6.2.54 and 6.2.55in [6, pp. 104—105], there relation
(3.14) is proved for a measud satisfying lim,_, o0 7,41(d) /7, (dp) = 2 andy'(x) > 0, a.e.,
respectively.

Corollary 3.1. Let du be a measure supported da-1,1] and let relation (3.11) prevail.
If m € N2 then for almost every € [—1,1]

2 .
(0@ — x2)Y2< lim supn oy (dit, m; x) < e (x) (1 — x2)Y/2,
m

n—oo

Proof. This follows from (2.51), (3.14), and (3.10)0

In what follows we shall give an estimation &f, (u, m; x) for a weight
u~W, a.c., (3.17)

whereW is ageneralized Jacobi weight:
r
W@ =[]k—u”, Ixl<1, Wx=0 |x|>1,
i=1
“1l=n<tr<---<t,=10¢=2, pi>-1,i=12...,r (3.18)
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Theorem 3.3. Let relation(3.17)prevail. Then with the constants associated with the symbol
depending on u and m,

1 4
Zjn(u,m; x) ~ dy(u; )Ny (x) ~ =W, (0)A,(x)!, x e[-1,1], jeMa. (3.19)
n
Here

172r1+1 172pr+1
W, (x) = [(1+x)1/2+ r—l} [(1—x)1/2+ ;]

r-1 1717
<] |:|x — 5|+ ;] . (3.20)
i=2

Proof. The relation (3.19) may be proved by the same argument as that of Theorem 1 in [11],
there this argument is applied to the case wliea M2 with m € N2 and remains valid for
jeMowithm>2. O

Lemma 3.7(Shi[10, Lemma 8]). Letxy, = xx, (du, m). Then
X1p < X1p-1 < X2p < X20-1 <+ < Xp—1n < Xp—1,n-1 < Xnn.
Lemma 3.8(Hardy[5, Theorem 27, pp. 71-72])L,et A, B, p=0andAB + p > 0. Then
(A + B)? <c(p)(AP + BP). (3.21)

Lemma 3.9. Letb > a > 0andd = (b — a)/h > 2. Then

(b—n)?P —(a+h)P>c” —aP), (3.22)
where
1, p<0,
e = | €L 0O<p<1, (3.23)
%}ff—ly’, p>1.

Proof. Rewrite (3.22) in the form witld = & /a
[1+(d—1)0 — A+ >c[(1+doP —1]. (3.24)

For p <0 we havdl + (d — 1)0]” > (1 + do)? and(1 + 6)? <1. Hence (3.24) withr = 1 is
valid.
For p > 0 we consider the problem to minimize the function

g0, c)=c (3.25)
subject to the condition
210, ¢) =[1+ (d — 1)) — (14 0P — c[(1+ dd)? — 1]1>0. (3.26)

If a pair {0, ¢} is a solution of this problem then according to Theorem 3./ Jrhere is a pair
{Z0, 21}, %0, 41=0, Ao+ 41 > 0, such that
Jg1

— == =0, 3.27
s (3.27)
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Jo— i1 8L o (3.28)
oc
and
J1g1 = 0. (3.29)

Eq. (3.28) shows that; > 0, for otherwise it would lead tdg = A1 = 0, a contradiction. Thus
Eq. (3.27) yields

081 _
I
that is,

Oy

d—D[1+d -1 = A+ 0P —cdl(1+do)P L =0.

This gives

(d—D[1+ -1 1— @A+ 06)r1
‘T dl(1+ do)]r—T '
If0 < p < 1then
. d—-D[d-—1)+ -1 1 —@1+05r1
- d[(1+dd)]p-1
B (d—l)P—1<1+5 )p_l>(d—1)P—1_

=

d 1+dd d ’
if p>1then
Ld=2(14+d -1 P—1>d—2 d—1\""1 @-2)@-1prt
cz =57 \ = 5 - .
d 1+dd d d ar
O
Lemma 3.10. Let—1<a < b<landd = (b —a)/h > 4.Let(3.17)prevail. Then
b—h b
/ u(t)dt}c(u,d)/ u(t)dt. (3.30)
a-+h a
Proof. Put
d—2 .
0= R 1<rln<|rr171(fi+1 — 1) (3.31)
and
1 -1 40
c1= / u(t)dt inf f u(t)dr > 0. (3.32)
_1 -1<1<1-90J¢

We separate the cases wher a — 2h > andb — a — 2h < 6.
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Casel: b —a — 2h >0. In this case by (3.32)

b—h T+0
/ u(t)dt > inf / u(t) dt

a+h —-1<t<1-9

1 b
> c1/ u(t)dt}clf u(t)dt.
-1

a

Case2:b — a — 2h < 6. In this case since

2b—a) _ d-2(-a)

b—a—2h=b—a- ,
a a y y

by (3.31)

1
b—a<= min (tiy1—1).
21<i<r—1(1+1 1)

This shows that the interval, b] contains at most one point ofs. Assume that the index
i, 1<i<r, satisfies

min |r —| = min  min |t —1;].
tela,b] 1<j<rtela,b]

Again we separate the cases whea [a, b] andr; ¢ [a, b].
Case2.1:t; € [a, b]. By calculation

b—h b—h
f u(t)dt}c/ |t — ;|7 dt

a+h a+h

[ —t =P (G —a =P e @+ hob—h,
=1 70—t =P —@ - +mP], <a+h,

szl —a—mPt — @ —b+ P G >b—h

On the other hand, we have

b b
/ u(r)dzgc/ |t—z,»|1’fdz=L[(b—t,-)/’f“ﬂz,-—a)l’f“].
a a Pi + 1

Fort; € (a + h, b — h), using inequality (3.21), we see

b—a—2n\P"t
(b=t =P (1 —a — P> (“T)
d—2 pitl g —2\rtt
= [(7) (b—a):| 25 (7) [(b—ti)pi+l+(ti —a)pi+1].

For (a <)t; <a + h, we have
1 1
Sl-—w) - -l > [b-a-h-h=d-2>2

b—tizb—a—h=(d—-1h>d—-1(# —a),
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and hence by (3.22)
b—t; — )P — (@ —t; + h)PitT
>(b—t; — )P — (G —a + h)Pt
e[ -t @ - o]
_cd—prrt—1)
7 d-1pritl g

[ =07+ @ —ayrt].

Similarly, if ; >b — h, then

(ti —a— P — @ —b+nyritt

cld -1t —1] pitl . pit+l
7 sl (LA G L

Thus in all the cases inequality (3.30) follows.
Case2.2:1; ¢ [a, b]. Suppose without loss of generality that a. Then

b—h b—h
/ u(t)dt>cf [t — 1|71 dt

a+h a+h

- i - (6=t =P+t = (@ =1 + ]
1

and

b b
/ u(t)dtgc/ |t — ;|7 dt
a a

C X .
= [(b )Pt (- r,~)1’t+1] .
1

Applying (3.22) we get (3.30). O

Lemma 3.11.If p>0, B > A>0,ando = +1, then

(B+0A)(B? + AP)
Brtl 4 gAptl

<2. (3.33)

Proof. The inequality (3.33) witly = —1 may be found in [10, Lemma 5]; the one with= 1
may be proved similarly. (]

Lemma 3.12. Letp>0, B,>A, >0, ¢ = £1,and

C 1\” 1\”
Bl 4 oAl < ~ [(Bn + ;) + (An + ;> ] . (3.34)

Then

c,
B, +oa, < CP) (3.35)
n
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Proof. If A, <1/nthen by (3.34) and (3.21)

Ay C 1\” 1\
B,i’*lé—"+—[<3n+—> +(An+—)]
n n n n

2C+1 1\? (2C+ 12 1\?
< c+ (Bn+—) <—(C+) [B,f+(—)]
n

n n n

and hence
By + 0Ay<2B, <~
If A, > 1/nthen by (3.34)
BY* oAl <= (B + Af)
and hence by (3.33)

¢ (B, +0A,)(BY + AP
Bn+6An<_.( 0 p+1n)( HPH n)
n B, T+ dA,

c
<-—. ]
n

Remark 3.1. Unfortunately, Lemmd.12 is not true in general for the case wheh < p < 0,
although we need such a result later. For exampledlet= n=3/4, ¢, = n=1/4 andB, =
(14 ¢,)%A,,. Then

BY? _AY? — g AY? o (14 e)A B Y

<2n 1B YP<n Y BV 4 A Y3

. 1\ ~1/2 1\ ~1/2
<2n B, + - + A+ = ,
n n

which shows that inequality (3.34) is true. But inequality (3.35) is violated, because

B, — A, = 2¢,A,, + 85271_1/2.

Lemma 3.13(Shi[11, Lemma 2]).Let P € P,,. Then
MaX | P'(x) W ()30 ()| <en max | P (o) Wa () (3.36)

Moreover,if (3.17)is true then
1
|rT‘EDiIP(JC)Wn(X)I <cn/ [P (x)|u(x)dx (3.37)
x| < -1

and

1

1
/ |P’(x)|(1—xz)l/zu(x)dxgcn/ |P(x)|u(x)dx, (3.38)
-1 1

whered, (x) = (1 —x9)2 + n~1 and cis a constant independent of n and P.

Lemma 3.14(Shi[11, Lemma 3]).Let y, = cosa, andz, = cosp,. If |o, — B,/<C/n then
with the constants associated with the symbalepending on w and C only

Wi (yn) ~ Wil(zn). (3.39)
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Theorem 3.4. Letxy, = xk, (1, m) and let relation(3.17)with
pi=0, i=23,...,r—1, (3.40)
prevail. Then the relatioii2.44)is valid.
Proof. The prooffollows and properly modifies the ideas of Nevaiin [6, pp. 164—-167]. Meanwhile
according to Lemma 2.7 itis enough to prove (2.45). We use the notgtiery ;, (u, m) of (2.28)
and break the proof into two claims.
Claim 1.
Xpg1 — X <cAp(xp), k=0,1,..., n.

Chooseng so large that for > ng

1 .
max (x — X)) <= min tit1 —1j).
nggn( k+1.n ) < 21<j<r71( j+1 ])

For a fixed index, 0<k <n, assume that an indéx 1<i <r, satisfies

min |t —t| = min min |t —t;].
r€[xg, Xg+1] 1< j<rtelxg,xp4al

So the intervalxy, x;1] contains no point of;’s except forr;.
By Theorem?2.3 it follows from (1.3) that

1
/ Am_2(€). %3 DI + Du(r) di
1

1
= / A2, xj; )L+ 1)sgn((t — x;)€;(u, m; 1" u(r) dt
-1

1
= 159N 25 i "] [ A€ 0L+ OISOy i )" o) d
-1

— (SN P (. 3 X)) Vijum—2.0 () (L + )
= Jm—2n(u, m; x;)(L+ x;). (3.41)

We need an Erss—Turan inequality ¢¢= ¢,,+1) [3]
() + lrr1(t) =1, t€[xg, xkv1]l, k=0,1,...,n,
from which it follows by (3.21) that
D)™ + L1 ()™ 2250 (0) + Len O 2257 1 € D, g,

k=0,1,...,n.
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Thus by (3.30)
1

1
/1IAm—2(ﬁk,Xk;t)|(1+t)u(t)dt+/ |Am—2(Ck+1, X413 DI+ Du(t) de

5 1 Xpp1 — x\" 2
n —2)! 5

X1~ (Xk41—2%) /5
<[ (660" + i)™ A+ Do) dr
X+ (Xk+1—xk) /5

) X1~ (Xk41—Xk) /S
Z>c(xppr —x0)" / L+ DHu(r)det
X+ (Xg+1—Xk) /5
Xk+1

Zc(xps1 — Xk)mfzf A+ Du(r)dt,

k

which, coupled with (3.41), gives

Xk+1

(ka1 — 20" 2 / (A + Due) dr
X
Ll m—2nu, m; xp) (L4 x1) + A2, (u, m; xp41) (L + xp41)1- (3.42)
If xpp1 — xk <Ap(xk) + Ap(xk4+1), then
2 2
(-2 - [a- D] ’ = xZyq — xP1 <2001 — 30

< _2 2, 1 12 | 1
<n{|:(l xk+1) +n:|+|:(1 ) n]}

and hence by Lemma 12

C
|An (Xg41) — A (i) | < = |(1—xk+1>1/2 (1—x£)1/2|<n—2

SoA, (xk+1) < cA, (x;) and
Xp41 — Xk < cAp (xp).

If xpr1 — xk > An(x) + Ay (x1), then using (3.19) inequality (3.42) gives

Ak41
/ A +du)dt< % [Wa () (L + xz) 4+ Wi (k) (L + xp41) |

k
or

/ . [t — 517" (1+1) dté% [Wh () (X4 xi) + Wi (1) (L4 xe1) ] - (3.43)
Xk

We distinguish the cases wher {1, r} and 2<i <r — 1.
Casel:i € {1, r}. Itis enough to treat the case whies: 1. In this case using (3.19) inequality
(3.43) yields

(L )2 = (L) 1172
C 1 2p1+3 1 2p1+3
- [(1 +xe) 2+ } + [(1+xk>1/2+ ;] :

Vl
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Again by Lemma3.12 we have
c
A+ x4 = A+ a0 M2<

Thus

Xkl — X =

1

L+ xM2 + @ 002 [+ w2 = @+ 20V

< [(1+Xk+1)1/2+(1+xk)1/2] |:(1+xk)1/2 ﬂ

[(1 —xpt2+ %] = cAp(x).

<

S1a I |0

Case2: 2<i<r — 1. In this case by (3.19) inequality (3.43) gives

c 1\ ?i 1\ ?i
(= xl+ =) + |1t —xkqal + =
n n n

|ti — Xklp"HlJr lti — xpga|PiHE, ti € [xk, Xpyal,
| 1t — x| P — |t — xpeqa|P ti & [xk, Xpal.

If t; € [xk, xk+1] then by LemmaB.12 it follows from (3.44) that
c
Xpr1 — Xk = |t — xx| + [t — x| < - <Ay (xp).
If t; ¢ [xk, xx+-1] then by LemmaB.12 it follows from (3.44) that

C
Xep1 — Xk = | 1ti — xx| — |ti — Xpq1l |<;<CAn(xk)-

Claim 2. xgy1 —xk=2cA(x), k=0,1,...,n

Applying Lemma3.13 several times and using (3.19), we obtain
A (ks 28 )10 ()™~ Wi (x)

<cmn f A" D (0, 3 01— D)D) di

1
<c(mn)™ f ) |Am—2(Lk, xx5 D)|u(r) dt

= c(mn)"™ dp—2.0(u, m; xi.)
<en™ W (u) A ()™ 2.

Thus it follows by Lemma 3.14 from Claim 1 that
AU ks xis 20)] < en™ W (00) A (600 ™ =20 ()" Wi ()~
< M)t x € [ Xl
But by the mean value theorem for the derivatives for some @gointxy, xx+1]
1= Af,'ln:zz) (Cres xi Xg) — A,(,T:gz) (Crs Xk Xg41)

1 —
= (i — DAY P, i &) <clopr — )AL ) 7L

(3.44)
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Then

Xg+1 — Xk = Ay (xg). O

Remark 3.2. Theorem 9.20 ir{6, pp. 164-165] and Theorem 2 in [11] are special cases of
Theorem 3.4 whem = 2 andm € N2 without the restriction (3.40), respectively. But their proofs
(the latter directly cites the former) are not suitable for the case when0, 2<i<r — 1. Itis
still open that if Theorem 3.4 remains true without this restriction.
As a consequence of Theorems 2.6, 3.3, and 3.4 we state the following.
Theorem 3.5. Let relation(3.17)with (3.40)prevail. Then forj € M1 \ {0}
. C .
|Zjn u, ms; x)| <Ay (u; X)Ap (x)! < ;Wn ()AL (x),

x e[-1,1] \ [(x14, x2,) U (xn—l,ns Xnn)]. (345)
Theorem 3.6. Letm € N». Then relation(3.17)is equivalent to

W, () < on (ut, m x) < 2 Wy (x). (3.46)
n n

Proof. It suffices to show the implication (3.46% (3.17). By (3.10) and (3.46)

-
u(x)(1— x2)1/2>c lim supnig, (4, m; x) = c(1 — x2)1/21_[ |x — 1|71,
i=1

n— o0
that is,
-
u(x)}cl_[pc — |7
i=1

Thus lim,_, « 7, (u)}/" = 2. Then applying Lemma.6 and using (3.46), we obtain

P
u(x)gcl_[|x—tf|pi. O
i=1

For the Chebyshev weightx) Turéan raised the following problefd5, p. 47]:

Problem 26. Give an explicit formula fori;;, (v, m) and determine its asymptotic behavior as
n — o0.
The following theorem gives an answer to the same problem for a weightv.

Theorem 3.7. If (3.17)with (3.40)is true,then,with the constants associated with the symbol
depending on u and m,

{ [SgnP,;(M, m; xkn)m])vkjn(ua m) ~ ,_],'Wn (Xkn) Ay (xk,,)j, J € Mo,

. 3.47
|)vkjn (, m)| < %Wn o) Ay (Xin) Jj € M1\ {0}. ( )

Proof. The firstformulain (3.47) follows directly from (3.19) and (2.27); the second one follows
from the first one, (3.45), and (2.27)



88 Y.G. Shi/ Journal of Approximation Theory 137 (2005) 5788
Acknowledgments

The author thanks the referees for carefully reading the manuscript and many helpful comments
on improving the original manuscript.

References

[1] M. Avriel, Nonlinear Programming: Analysis and Methods, Prentice-Hall, Englewood Cliffs, NJ, 1979.
[2] B.D. Bojanov, D. Braess, N. Dyn, Generalized Gaussian quadrature formulas, J. Approx. Theory 48 (1986)
335-353.
] P. Erdds, P. Turan, On interpolation. lll, Ann. Math. 41 (1940) 510-553.
] G. Freud, Orthogonal Polynomials, Akademi Kiadd, Budapest, Pergamon, Oxford, 1971.
[5] G.H.Hardy, J.E. Littlewood, G. Pélya, Inequalities, Cambridge, 1934.
] P.Nevai, Orthogonal Polynomials, Memoirs of the American Mathematical Society, vol. 213, American Mathematical
Society, Providence, RI, 1979.
[7]1 P. Nevai, G. Freud, Orthogonal polynomials and Christoffel functions: a case study, J. Approx. Theory 48 (1986)
3-167.
[8] Y.G. Shi, On Christoffel type functions fdr,, extremal polynomials. I, J. Approx. Theory 103 (2000) 281-291.
[9] Y.G. Shi, On Hermite interpolation, J. Approx. Theory 105 (2000) 49-86.
[10] Y.G. Shi, On Christoffel type functions fdr,, extremal polynomials. Il, J. Approx. Theory 111 (2001) 59—80.
[11] VY.G. Shi, L,, extremal polynomials associated with generalized Jacobi weights, Acta Math. Appl. Sinica, English
Ser. 19 (2003) 205-218.
[12] Y.G. Shi, Theory of Birkhoff Interpolation, Nova Science Publishers, Inc., New York, 2003.
[13] Y.G. Shi, G. Xu, Construction af-orthogonal polynomials and Gaussian quadrature formulas, Adv. Comput. Math.,
in press.
[14] 1. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer, Berlin, 1970.
[15] P. Turan, On some open problem of approximation theory, J. Approx. Theory 29 (1980) 23-86.
[16] J.L. Uliman, A survey of exterior asymptotics for orthogonal polynomials associated with a finite interval and a study
of the case of the general weight measure, in: S.P. Singh et al. (Eds.), Approximation Theory and Spline Functions,
D. Reidel Publishing Company, Dordrecht, 1984, pp. 467—478.



