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Abstract

The complete extension of the Christoffel type functions to them-orthogonal polynomials is established.
The properties of the Christoffel type functions are investigated. The estimations and asymptotics of the
Christoffel type functions for some weights including a generalized Jacobi weight are also given.
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1. Introduction and definition

We denote byN,N0,N1, or N2 the set of positive, nonnegative, odd integers, or even integers,
respectively. We also denote byR the set of real numbers.
Let � be a nondecreasing function onR with infinitely many points of increase such that all

moments ofd� are finite. We calld� a measure. If� happens to be absolutely continuous then we
will usually writew instead of�′ and will callw a weight. The support ofd� is the set of points
of increase of�(x) and the smallest interval containing it is denoted by�(d�). The symbolPN
stands for the set of algebraic polynomials of degree at mostN. The symbol�P denotes the exact
degree of the polynomialP �= 0, i.e.,P ∈ P�P \ P�P−1.
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Wedenotebyc, c1, . . .positive constants independent of variablesand indices, unlessotherwise
indicated; their value may be different at different occurrences, even in subsequent formulas. We
write an ∼ bn if c1�an/bn�c2 holds for everyn. The notationsa(x) ∼ b(x) andan(x) ∼ bn(x)

have similar meaning.
Throughout this paper letm ∈ N (m�2), M1 = {j�m − 3 : m − j ∈ N1}, andM2 =

{j�m−2 : m−j ∈ N2}. PutP∗
N = {P(x) = c(x−y1) · · · (x−yr) : c, y1, . . . , yr ∈ R, r�N}

andP∗
N(x) = {P ∈ P∗

N : P(x) = 1} for x ∈ R. We agreeP∗
0 = P0.

We define them-monic orthogonal polynomials

Pn(d�,m; x) = xn + · · · , n = 0, 1, . . . ,

for which∫
R

|Pn(d�,m; x)|m d�(x) = min
P(x)=xn+···

∫
R

|P(x)|m d�(x). (1.1)

If �′ = w is a weight then we will usually writePn(w,m; x) instead ofPn(d�,m; x). According
to Theorem 4 in[2] (see also Theorem 2.2 here), ifxk = xkn(d�,m) with

x1 < x2 < · · · < xn (1.2)

are the zeros ofPn(d�,m; x) then the Gaussian quadrature formula

∫
R
f (x)sgnPn(d�,m; x)m d�(x) =

n∑
k=1

m−2∑
j=0

�kj f
(j)(xk) (1.3)

is exact for allf ∈ Pmn−1, where theChristoffel numbers�kj are given by

�kj = �kjn(d�,m) =
∫
R
Akj (x)sgnPn(d�,m; x)m d�(x) (1.4)

andAkj ∈ Pmn−1 are the fundamental polynomials of Hermite interpolation, which satisfy

A
(p)
kj (xq) = �kq�jp, j, p = 0, 1, . . . , m− 1, k, q = 1,2, . . . , n.

As we know, orthogonal polynomials (m= 2) have a long history of study and a classical
theory. One of the important contents of this theory are theChristoffel functions

�n(d�; x) = min
P∈Pn−1,P (x)=1

∫
R
P(t)2 d�(t), (1.5)

which are closely related to theChristoffel numbers

�kn(d�) = �n(d�; xkn(d�)), k = 1,2, . . . , n.

Here we accept the notationPn(d�) = Pn(d�, 2), xkn(d�) = xkn(d�, 2), etc. The study and
applications of the Christoffel functions can be found in[7].
For the case whenm ∈ N2 andj ∈ M2 the author in [8] defines the Christoffel type functions

�jn(d�,m; x), which are the extension of�n(d�; x) to them-orthogonal polynomials, and in
[10,11] gives estimations and asymptotics of�jn(u,m; x) for a weightu ∼ W for this case,
whereW is a generalized Jacobi weight. In this paper, we shall establish a complete extension of
the Christoffel type functions to them-orthogonal polynomials for anym�2 andj�m−2 in this
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section and further study their properties in Section 2. In Section 3, we shall give the estimations
and asymptotics of the Christoffel type functions for someweights including a generalized Jacobi
weight.
Given a fixed pointx ∈ R, an indexj, 0�j�m−2, andn ∈ N, forP ∈ Pn−1 with P(x) = 1

let the polynomial

Aj(P, x; t) = Ajnm(P,x;t)= 1
j ! (t−x)jBj (P,x;t)P (t)m

(1.6)

with Bj (P, x; ·) ∈ Pm−j−2 satisfy the condition

A
(i)
j (P, x; x) = �ij , i = 0, 1, . . . , m− 2. (1.7)

It is easy to see thatAj(P, x; t) must exist and be unique.

Definition 1.1. The Christoffel type function�jn(d�,m; x) with respect tod� is defined by

�jn(d�,m; x) = inf
P∈P∗

n−1(x)

∫
R
Aj(P, x; t)sgn[(t − x)P (t)]m d�(t) (1.8)

for j ∈ M2 and by

�jn(d�,m; x) =
∫
R
Aj(P, x; t)sgn[(t − x)P (t)]m d�(t) (1.9)

for j ∈ M1, where the polynomialP in (1.9) is the solution of (1.8) in the case whenj ∈ M2.

Remark 1.1. Weshall see that there is auniquepolynomialP ∈ P∗
n−1(x) such thatEq. (1.8) holds

for everyj ∈ M2 (Theorem 2.1). So the definition of�jn(d�,m; x) for j ∈ M1 is reasonable.

Remark 1.2. It is particularly simple to determine�j1(d�,m; x): in this case we have that
P∗
0(x) = {1}, Aj (P, x; t) = (t − x)j /j !, and

�j1(d�,m; x) = 1

j !
∫
R
(t − x)jsgn(t − x)m d�(t).

So in what follows we always assumen�2.

2. Properties

The expression and the main properties of the polynomialBj (P, x; t) are as follows.

Lemma 2.1.We have

Bj (P, x; t) =
m−j−2∑
i=0

bi(t − x)i, (2.1)

where

bi = bi(P, x) = 1

i!
[
P(t)−m

](i)
t=x

, i = 0, 1, . . . . (2.2)

Moreover,for P ∈ P∗
n−1(x) andj ∈ M2

bm−j−2 > 0, Bj (P, x; t) > 0, t ∈ R. (2.3)
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Proof. If we rewrite (1.6) in the form

Aj(P, x; t)P (t)−m = 1

j ! (t − x)jBj (P, x; t)

= 1

j !
m−j−2∑
i=0

bi(t − x)i+j ,

using (1.7)we canexamine (2.2). To prove (2.3) it suffices to apply (2.24) in [9], since�Bj (P, x; ·)
= m − j − 2 ∈ N2. �

Remark 2.1. By (2.3) we see that the integrand in (1.8) is nonnegative forj ∈ M2:

Aj(P, x; t)sgn[(t − x)P (t)]m = |Aj(P, x; t)|.

Remark 2.2. Form�3 the restrictionP ∈ P∗
n−1(x) cannot be replaced by the conditionP ∈

Pn−1 with P(x) = 1 used in the case whenm = 2, for otherwise the function�jn(d�,m; x) =
−∞ may occur. For example choosen = 3, m = 4, x = 0, andP(t) = 1+ dt2 (d > 0). By a
simple calculation we see

[P(t)−4]′ = −8dt (1+ dt2)−5,

[P(t)−4]′′ = −8d(1+ dt2)−5 + 80d2t2(1+ dt2)−6,

b0 = 1, b1 = 0, b2 = −4d

and

A0(P, 0; t) = (1− 4dt2)(1+ dt2)4.

It is easy to see that for any measured�

lim
d→∞

∫
R
A0(P, 0; t) d�(t) = −∞.

Remark 2.3. Thedefinition (1.8) is not suitable forj ∈ M1. For example form ∈ N2, j = m−3,
and

−2< x1 < x2 < · · · < xn−1 < x = −1,

we have

Am−3(P, x; t) = [1+ b1(t − x)]P(t)m, P (t) =
n−1∏
i=1

t − xi

x − xi
.

Since by Lemma 2.2 in[9]

b1 = a1n =
n−1∑
i=1

m

xi − x
� m

xn−1 − x
,

we have

Am−3(P, x; t)�
[
1+ m(t − x)

xn−1 − x

]
P(t)m = m(t0 − t)

x − xn−1
P(t)m, t ∈ [−1,1],
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where

t0 = x − xn−1

m
− 1 ∈ (−1,1).

Then ∫ 1

−1
Am−3(P, x; t) d�(t)

� m

x − xn−1

[∫ t0

−1
(t0 − t)P (t)m d�(t) −

∫ 1

t0

(t − t0)P (t)m d�(t)

]

� m

x − xn−1

[
P(t0)

m

∫ t0

−1
(t0 − t) d�(t) − P(t0)

m

∫ 1

t0

(t − t0) d�(t)

]
.

Thus asxn−1 → x we havet0 → −1 and hence

lim
xn−1→x

∫ 1

−1
Am−3(P, x; t) d�(t) = −∞.

This shows that the definition (1.8) is not suitable for this case.
Let

P�(t) = P(t) + �(t − x)Q(t), P ∈ P∗
n−1(x), Q ∈ Pn−2

and putf (�; t) = Aj(P�, x; t) andg(�; t) = Bj (P�, x; t). The pair(P,Q) is said to satisfy
Condition A if there is a number� > 0 such that the relationP� ∈ P∗

n−1(x) holds for every
� ∈ [0, �].

Lemma 2.2. Letd� be a measure onR. For a fixed pointx ∈ R and a fixed indexj ∈ M2 let a
polynomialP ∈ P∗

n−1(x) satisfy the equation∫
R
Aj(P, x; t)sgn[(t − x)P (t)]m d�(t) = �jn(d�,m; x). (2.4)

If the pair (P,Q) satisfies Condition A,then∫
R
[(t − x)P (t)]m−1q(t)sgn[(t − x)P (t)]m d�(t)�0, (2.5)

where

q(t) = (t − x)j−m+1[g′
�(0; t)P (t) + m(t − x)g(0; t)Q(t)] (2.6)

and

q ∈ Pmax{�P−1,�Q}. (2.7)

Proof. The lemmawithm ∈ N2 is just Lemma 2 in[8]. By the same argument as that of Lemma 2
in [8] we can prove our lemma withm ∈ N1. We omit the details. �

Lemma 2.3. Letd� be ameasure onR. Let a pointx ∈ R be fixed and j∈ M2.Then there exists
a polynomialP ∈ P∗

n−1(x) such that relation(2.4)holds.
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Moreover,if a polynomialP ∈ P∗
n−1(x) is a solution of(2.4),then

(a) the zeros of the polynomial P are distinct,
(b) �P �n − 2,
(c) the polynomial P satisfies the orthogonality relation:∫

R
[(t − x)P (t)]m−1q(t)sgn[(t − x)P (t)]m d�(t) = 0, ∀q ∈ Pn−2. (2.8)

Proof. There is a gap in the proof of the same lemma withm ∈ N2 (Lemma 3) in[8]; so we give
a correct and complete proof here.
To prove the first part of the lemma assume that the polynomialsPN ∈ P∗

n−1(x),N = 1,2, . . .,
satisfy

lim
N→∞

∫
R
Aj(PN, x; t)sgn[(t − x)PN(t)]m d�(t) = �jn(d�,m; x).

Then (see Remark 2.1)∫
R

|Aj(PN, x; t)| d�(t)�c < +∞, ∀N ∈ N.

Write

Aj(PN, x; t) =
mn−2∑
k=0

akN t
k.

By theorem of equivalent norms of finite-dimensional spaces the previous inequalities imply that

|akN |�c1 < +∞, k = 0, 1, . . . , mn− 2, ∀N ∈ N.
According to Bolzano–Weierstrass theorem, by passing to a subsequence if necessary, we may
suppose thatPN → P (N → ∞). ThenP ∈ P∗

n−1(x) and relation (2.4) holds.
Let us prove the second part of the lemma.
Assume

P(t) =
r∏

k=1

(
t − tk

x − tk

)pk

,

where−∞ < t1 < t2 < · · · < tr < +∞, p1, p2, . . . , pr ∈ N. We claim that∫
R

(t − x)m−1P(t)m

t − tk
sgn[(t − x)P (t)]m d�(t) = 0, k = 1,2, . . . , r; (2.9)

further if �P �n − 2 then the additional equation∫
R
(t − x)m−1P(t)msgn[(t − x)P (t)]m d�(t) = 0 (2.10)

holds.
To prove (2.9) chooseQ(t) = ±P(t)/(t − tk), 1�k�r, for which the pair(P,Q) obviously

satisfies Condition A. In this case relation (2.6) is of the form

q(t) = C(t)Q(t), (2.11)
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where the function

C(t) = (t − x)j−m+1[mg(0; t)(t − x) ± g′
�(0; t)(t − tk)]

is a polynomial int, because the functionsq,Q, and the function in the bracket are polynomials
in t, andQ(x) �= 0. The relation (2.7) shows�q��Q and henceC(t) ≡ C. This constantC is
not zero, since by (2.3)

C = C(tk) = mg(0; tk)(tk − x)j−m+2 = mBj(P, x; tk)(tk − x)j−m+2 > 0.

Substitutingq into (2.5), we obtain (2.9).
Similarly, to prove (2.10) chooseQ(t) = ±P(t), for which the pair(P,Q) obviously satisfies

Condition A. In this case relation (2.11) holds, where the function

C(t) = (t − x)j−m+1[mg(0; t)(t − x) ± g′
�(0; t)]

is also a constant by the same argument as above. To determine this constant we observe that

�g′
�(0; ·)�m − j − 2< m − j − 1 = �[g(0; ·)(· − x)]

and hence by (2.3)

C(t) ≡ C = lim
t→∞ C(t) = mbm−j−2 > 0.

Substituting thisq into (2.5), we obtain (2.10).
(a) Suppose to the contrary thatpk > 1 holds for somek, 1�k�r. ChooseQ(t) = −(t −

x)P (t)/(t − tk)
2, for which the pair(P,Q) obviously satisfies Condition A. In this case by (2.6)

we can writeq in the form

q(t) = C(t)
P (t)

(t − tk)2
, (2.12)

where the function

C(t) = (t − x)j−m+1[g′
�(0; t)(t − tk)

2 − mg(0; t)(t − x)2]
is a polynomial int by the same reason as above. The relation (2.7) shows�q��Q and hence
�C�1. Thus we may write the linear functionC in the formC(t) = C1(t − x)+ C2(t − tk). To
determine the sign of the constantC1 we use (2.3) to get

C1 = C(tk)

tk − x
= −mg(0; tk)(tk − x)j−m+2 = −mBj(P, x; tk)(tk − x)j−m+2 < 0.

Then by (2.12) and (2.9)∫
R
[(t − x)P (t)]m−1q(t)sgn[(t − x)P (t)]m d�(t)

= C1

∫
R

[(t − x)P (t)]m
(t − tk)2

sgn[(t − x)P (t)]m d�(t)

+C2

∫
R

(t − x)m−1P(t)m

t − tk
sgn[(t − x)P (t)]m d�(t)

= C1

∫
R

|(t − x)P (t)|m
(t − tk)2

d�(t) < 0,

contradicting (2.5). This proves statement (a).
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(b) Suppose not and let�P < n − 2. ChooseQ(t) = −(t − x)P (t), which belongs toPn−2
and for which the pair(P,Q) obviously satisfies Condition A. In the present case by (2.6) we get
q(t) = C(t)P (t), where

C(t) = (t − x)j−m+1[g′
�(0; t) − mg(0; t)(t − x)2].

Again we conclude�C�1 and we may write the linear functionC in the formC(t) = C1(t −
x) + C2. To determine the sign of the constantC1 we observe that

�g′
�(0; ·)�m − j − 2< m − j = �[(· − x)2g(0; ·)]

and hence by (2.3)

C1 = lim
t→∞

C(t)

t − x
= −mbm−j−2 < 0.

By (2.10) this leads to a contradiction∫
R
[(t − x)P (t)]m−1q(t)sgn[(t − x)P (t)]m d�(t)

= C1

∫
R

|(t − x)P (t)|m d�(t)

+C2

∫
R
(t − x)m−1P(t)msgn[(t − x)P (t)]m d�(t)

= C1

∫
R

|(t − x)P (t)|m d�(t) < 0

and proves statement (b).
(c) If r = n − 1 then relation (2.9) means (2.8), since the set

{P(t)/(t − t1), . . . , P (t)/(t − tn−1)}
spans the spacePn−2; if r = n − 2 then relations (2.9) and (2.10) imply (2.8), since the set

{P(t)/(t − t1), . . . , P (t)/(t − tn−2), P (t)}
again spans the spacePn−2. �

Now we can give the following two main results (Theorems2.1 and 2.2) in this section, which
are direct extensions of the corresponding results for orthogonal polynomials.

Theorem 2.1. Letd� be a measure onR and letx ∈ R be fixed.

(a) There exists a unique polynomialP ∈ P∗
n−1(x) such that(2.4)holds for everyj ∈ M2.

(b) �P �n − 2 and the zeros of the polynomial P are distinct.
(c) Eq. (2.4) is true if and only if the orthogonality relation(2.8)holds.
(d) We have

�m−2,n(d�,m; x)= min
Q∈Pn−1,Q(x)=1

1

(m − 2)!
×

∫
R

|Q(t)|m|t − x|m−2 d�(t). (2.13)
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Proof. We begin by showing statement (d). To this end introduce the(n− 1)-dimensional space

Gx = {(t − x)Q(t) : Q ∈ Pn−2}. (2.14)

Let us consider the extremal problem: to findP ∈ Pn−1 such thatP(x) = 1 and∫
R

|P(t)|m|t − x|m−2 d�(t) = min
Q∈Pn−1,Q(x)=1

∫
R

|Q(t)|m|t − x|m−2 d�(t). (2.15)

It is easy to see that relation (2.15) is true if and only ifR = 1− P (∈ Gx) satisfies the equation∫
R

|1− R(t)|m|t − x|m−2 d�(t) = min
Q∈Gx

∫
R

|1− Q(t)|m|t − x|m−2 d�(t). (2.16)

But this is a problem ofLm approximation to the function 1 with respect to the measure|t −
x|m−2 d�(t) from the(n−1)-dimentional subspaceGx . By [14,Corollary 2.2, p. 98,Corollary 3.5,
p. 111, Theorem 1.11, p. 56] we conclude that there is auniquefunctionR ∈ Gx satisfying (2.16)
and further relation (2.16) holds if and only if∫

R
[1− R(t)]m−1q(t)|t − x|m−2sgn[1− R(t)]m d�(t) = 0, ∀q ∈ Gx. (2.17)

RecallingR = 1− P , relation (2.17) is equivalent to (2.8). This means by (2.14) that there is a
uniquepolynomialP ∈ Pn−1 with P(x) = 1 satisfying (2.15) and further relation (2.15) holds if
and only if (2.8) is valid. The orthogonality relation (2.8) shows that the polynomial(t − x)P (t)

in t changes sign at leastn − 1 times and henceP(t) changes sign at leastn − 2 times. But
P ∈ Pn−1. So Phas distinct real zeros only and henceP ∈ P∗

n−1(x). By (1.6), (2.1), and (2.2)
we see

Am−2(P, x; t) = 1

(m − 2)! (t − x)m−2P(t)m. (2.18)

This proves Statements (d).
Meanwhile, we have proved that the solution of the orthogonality relation (2.8) isunique. By

Lemma 2.3 statements (a)–(c) follow.�

As an immediate consequence of Theorem 2.1 we state

Corollary 2.1. Letd� be ameasure onR and letP ∈ Pn−1withP(x) = 1satisfy(2.8)or (2.15).
Then the relation(1.9)holds for everyj = 0, 1, . . . , m− 2.

Remark 2.5. Corollary2.1 provides an alternative definition of�jn(d�,m; x).

Corollary 2.2. Letd� be a measure onR.We have

�0n(d�, 2; x) = �n(d�; x). (2.19)

Corollary 2.3. Letd� be a measure onR. If P ∈ P∗
n−1(x) satisfies(2.4) then the interval�(d�)

contains at leastn − 2 zeros of P.

Proof. Suppose to the contrary that the interval�(d�) containsr(�n − 3) zeros ofP, say,
t1, . . . , tr . For q(t)= (t −x)(t − t1) · · · (t − tr )we see that the polynomial[(t −x)P (t)]m−1q(t)
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does not change sign in�(d�), which implies that its integral overR is not zero, contradicting
(2.8). �

The second main result in this section is the following

Theorem 2.2. Letd� be a measure onR and let a polynomialP ∈ P∗
n−1(x) have the form

P(t) = c

�P∏
i=1

(t − ti ), t1 < t2 < · · · < t�P . (2.20)

Then the following statements are equivalent:

(a) The polynomial P satisfies(2.4) for j ∈ M2.
(b) The polynomial P satisfies the orthogonality relation(2.8).
(c) We have the Gaussian quadrature formula

∫
R
f (t)sgn[(t − x)P (t)]m d�(t) =

�P∑
k=0

m−2∑
j=0

ckjf
(j)(tk) (2.21)

exact for allf ∈ P(m−1)(�P+1)+n−2, wheret0 = x and

�jn(d�,m; x) = c0j , j = 0, 1, . . . , m− 2. (2.22)

(d) The polynomial P satisfies(2.15).

Proof. (a)⇐⇒ (b). Use Theorem 2.1(c).
(b)⇐⇒ (c). We separate the cases when�P = n − 1 and�P = n − 2.
Case1: �P = n− 1. In this case letAkj ∈ Pmn−2 be the fundamental polynomials of Hermite

interpolation at the nodest0, t1, . . . , tn−1 with the corresponding multiplicitym0 = m−1, m1 =
· · · = mn−1 = m. Then forf ∈ Pmn−2

f (t) =
�P∑
k=0

mk−1∑
j=0

f (j)(tk)Akj (t). (2.23)

Multiplying this with sgn[(t − x)P (t)]m and then integrating the obtained formula, we have

∫
R
f (t)sgn[(t − x)P (t)]m d�(t) =

�P∑
k=0

mk−1∑
j=0

ckjf
(j)(tk), (2.24)

where

ckj =
∫
R
Akj (t)sgn[(t − x)P (t)]m d�(t). (2.25)

The formula (2.24) becomes (2.21) if and only if

ck,mk−1 = ck,m−1 = 0, k = 0, 1, . . . , �P. (2.26)
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Since

Ak,m−1(t)= 1

(m − 1)!(tk − x)m−1P ′(tk)m

×[(t − x)P (t)]m−1 P(t)

t − tk
, k = 1,2, . . . , n − 1,

relation (2.26) is equivalent to (2.8).
Case2: �P = n − 2. In this case we have to consider the generalized Gaussian quadrature

formula at the nodest0, t1, . . . , tn−2 with the corresponding multiplicitym0 = m1 = · · · =
mn−2 = m. By Lemma 2.3 in [13] relation (2.21) holds for allf ∈ Pm(n−1)−1 if and only if the
orthogonality relation (2.8) is valid.
(b)⇐⇒ (d). Apply Theorem 2.1(c) and (d).�

The relationship between the Christoffel type functions and the Christoffel numbers is given
as follows.

Theorem 2.3. Letd� be a measure onR and for any pointx ∈ R let P(x; ·) ∈ P∗
n−1(x) satisfy

(2.8).Letxkn = xkn(d�,m).

(a) We have

�kjn(d�,m) = [sgnP ′
n(d�,m; xkn)m]�jn(d�,m; xkn),

k = 1,2, . . . , n, j = 0, 1, . . . , m− 2. (2.27)

(b) We have

P(xkn; t) = %kn(d�,m; t) = Pn(d�,m; t)
P ′
n(d�,m; xkn)(x − xkn)

, k = 1,2, . . . , n. (2.28)

(c) We have

P(xk,n−1; t) = %k,n−1(d�,m; t)
= Pn−1(d�,m; t)

P ′
n−1(d�,m; xk,n−1)(x − xk,n−1)

, k = 1,2, . . . , n − 1. (2.29)

(d) The equality�P(x; ·) = n− 2 is true if and only if equalityx = xk,n−1 holds for some index
k, 1�k�n − 1.

Proof. (a) Let an indexk, 1�k�n, be fixed. We notice that the polynomialPn(d�,m) satisfies
the orthogonality relation by Lemma 2.3 in[13]∫

R
Pn(d�,m; t)m−1q(t)sgnPn(d�,m; t)m d�(t) = 0, ∀q ∈ Pn−1, (2.30)

or equivalently∫
R
[(t − xkn)P (t)]m−1q(t)sgn[(t − xkn)P (t)]m d�(t) = 0, ∀q ∈ Pn−1, (2.31)

whereP(t) = %kn(d�,m; t). According to Theorem2.1 Eq. (2.31) means

�jn(d�,m; xkn) =
∫
R
Aj(P, xkn; t)sgn[(t − xkn)P (t)]m d�(t).
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Insertingf (t) = Aj(P, xkn; t) into (1.3) and using the above relation, we obtain

�kjn(d�,m)=
∫
R
Aj(P, xkn; t)sgnPn(d�,m; t)m d�(t)

= [sgnP ′
n(d�,m; xkn)m]

∫
R
Aj(P, xkn; t)sgn[(t − xkn)P (t)]m d�(t)

= [sgnP ′
n(d�,m; xkn)m]�jn(d�,m; xkn).

This proves (2.27).
(b) The relation (2.28) is a direct consequence of the above conclusion.
(c) To prove (2.29) we use (2.31) with replacingn by n − 1∫

R
[(t − xk,n−1)P (t)]m−1q(t)sgn[(t − xk,n−1)P (t)]m d�(t) = 0, ∀q ∈ Pn−2,

whereP(t) = %k,n−1(d�,m; t). This by Theorem2.1 means (2.29).
(d) We observe that by (2.29) equality�P(x; ·) = n − 2 is true if equalityx = xk,n−1 holds

for some indexk, 1�k�n − 1. Conversely, if equality�P(x; ·) = n − 2 is true, then by (2.8)
the(n − 1)th polynomial(t − x)P (x; t) is themorthogonal polynomial with respect tod� and
hence equalityx = xk,n−1 holds for some indexk, 1�k�n − 1. �

Lemma 2.4. Let�P = n, n−1��Q�n, P �= cQ,andp > −1.Then the following statements
are equivalent:
(a) the function

f (c, d, p; x) = c|P(x)|pP (x) + d|Q(x)|pQ(x) (2.32)

has at leastn − 1 sign changes for every nonzero pair{c, d};
(b) both P and Q have simple real zeros only,and the zeros of P and Q mutually separate each

other.

Proof. We separate the cases whenp = 0 andp �= 0.
Case1: p = 0.
(a)�⇒ (b). In this case we claim that the polynomial

f (c, d,0; x) = cP (x) + dQ(x)

has simple real zeros only for every nonzero pair{c, d}, because it has at leastn−1 sign changes
and its degree isn or n − 1. We observe that the polynomialsP andQ have no common zeros.
Suppose not and assume thatP(y) = Q(y) = 0 for some numbery ∈ R. Then the polynomial

f (Q′(y),−P ′(y), 0; x) = Q′(y)P (x) − P ′(y)Q(x)

would have a zeroy of multiplicity �2, a contradiction to the claim.
Further, letxk, k = 1,2, . . . , n, in (1.2) be the zeros ofP. We claim that each interval

(xk, xk+1), k = 0, 1, . . . , n (x0 = −∞, xn+1 = +∞), cannot contain more than one zero
of Q. In fact, suppose to the contrary that the interval(xj , xj+1), 0�j�n, contains two zeros
of Q. Then we may choose a pair{c, d} so that the polynomialf (c, d,0; x) has a zeroy of
multiplicity �2, a contradiction to the claim.
By interchangingP andQ we can prove that each interval(yk, yk+1), k = 0, 1, . . . , �Q,

cannot contain more than one zero ofP, whereyk, k = 1,2, . . . , �Q, are the zeros ofQ
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and

−∞ = y0 < y1 < · · · < y�Q < y�Q+1 = +∞.

Hence we conclude that between two consecutive zeros ofP (orQ) we have exactly one zero of
Q (orP).
(b)�⇒ (a). This implication is trivial for the case whend = 0. We treat the case whend �= 0.

Assume thatP has the zeros (1.2). Since

f (c, d,0; xk) = d|Q(xk)|pQ(xk), k = 1,2, . . . , n

and

Q(xk)Q(xk+1) < 0, k = 1,2, . . . , n − 1,

the polynomialf (c, d,0; x) has at leastn − 1 sign changes.
Case2: p �= 0. In this case we claim that the inequality

F(x) = [P(x) + Q(x)][|P(x)|pP (x) + |Q(x)|pQ(x)]�0

holds for every pointx. In fact, for a fixed pointx, if |P(x)| > |Q(x)| or P(x) = Q(x)

sgn[P(x) + Q(x)] = sgn[|P(x)|pP (x) + |Q(x)|pQ(x)] = sgn[P(x)]
and henceF(x)�0; similarly, if |P(x)| < |Q(x)| orP(x) = −Q(x) thenF(x)�0. This proves
our claim.
With the help of this claim if we write

f (c, d, p; ·)=
∣∣∣(sgnc)|c|1/(p+1)P

∣∣∣p [
(sgnc)|c|1/(p+1)P

]
+

∣∣∣(sgnd)|d|1/(p+1)Q

∣∣∣p [
(sgnd)|d|1/(p+1)Q

]
we can conclude that the functionf (c, d, p; ·) with p �= 0 has at leastn − 1 sign changes for
every nonzero pair{c, d} if and only if the polynomial

f ((sgnc)|c|1/(p+1), (sgnd)|d|1/(p+1), 0; ·)
has at leastn − 1 sign changes for every nonzero pair{c, d}, which is equivalent to that the
polynomialf (c, d,0; ·) = cP +dQ has at leastn−1 sign changes for every nonzero pair{c, d}.
It remains to apply the conclusion of Case 1.�

Theorem 2.4. Letd� be a measure onR and for any pointx ∈ R let P(x; ·) ∈ P∗
n−1(x) satisfy

(2.4) for j ∈ M2. If x �= y then the zeros of the polynomials(t − x)P (x; t) and(t − y)P (y; t)
are separate;more precisely,between two consecutive zeros of the polynomial(t − x)P (x; t) (or
(t − y)P (y; t)) there is precisely one zero of(t − y)P (y; t) (or (t − x)P (x; t)).
In particular, if the polynomialP(x; ·) has the form(2.20) and if x /∈ {x1n(d�,m), . . . ,

xnn(d�,m)}, then each open interval
(xkn(d�, m), xk+1,n(d�, m)), k = 1,2, . . . , n − 1,

contains precisely one point of{x, t1, . . . , t�P }.



70 Y.G. Shi / Journal of Approximation Theory 137 (2005) 57–88

Proof. By Theorem2.1∫
R
[(t − x)P (x; t)]m−1q(t)sgn[(t − x)P (x; t)]m d�(t) = 0, ∀q ∈ Pn−2

and ∫
R
[(t − y)P (y; t)]m−1q(t)sgn[(t − y)P (y; t)]m d�(t) = 0, ∀q ∈ Pn−2.

Then for arbitrary numbersc andd∫
R
{c[(t − x)P (x; t)]m−1sgn[(t − x)P (x; t)]m

−d[(t − y)P (y; t)]m−1sgn[(t − y)P (y; t)]m}q(t) d�(t) = 0, ∀q ∈ Pn−2

or equivalently∫
R
{c|(t − x)P (x; t)|m−2(t − x)P (x; t)
−d|(t − y)P (y; t)|m−2(t − y)P (y; t)}q(t) d�(t) = 0, ∀q ∈ Pn−2.

This shows that the term in the brace has at leastn−1 sign changes for every nonzero pair{c, d}.
Applying Lemma2.4 we obtain the first part of the theorem. The second one follows from the
first one and Theorem 2.3.�

Theorem 2.5. Letd� be a measure onR and for any pointx ∈ R let P(x; ·) ∈ P∗
n−1(x) satisfy

(2.4) for j ∈ M2. Then bothP(x; ·) and�jn(d�,m; x) are continuous with respect to x.

Proof. To prove our theorem it is convenient to apply Theorem 2.2(d): the inequality∫
R

|P(x; t)|m|t − x|m−2 d�(t)�
∫
R

|Q(t)|m|t − x|m−2 d�(t) (2.33)

holds for allQ ∈ Pn−1 with Q(x) = 1. Let x → � for some point� and letQ0 ∈ Pn−1 with
Q0(�) = 1 be arbitrary. PutQ(t) = Q0(t − x + �). ClearlyQ(x) = 1 and inequality (2.33)
holds. Takingx → � in this inequality, suppose, passing to a subsequence if necessary, that
P(x; ·) → P0. Then∫

R
|P0(t)|m|t − �|m−2 d�(t)�

∫
R

|Q0(t)|m|t − �|m−2 d�(t).

SinceP0(�) = 1 andQ0 ∈ Pn−1 with Q0(�) = 1 is arbitrary, by uniquenessP0 = P(�; ·). This
prove thatP(x; ·) is continuous with respect tox. Hence�jn(d�,m; x) is also continuous with
respect tox. �

Lemma 2.5(Shi[12, Theorem 7.4, p. 162]).Lety1 < y2 < · · · < yn, mk ∈ N, k = 1,2, . . . , n,
andN = ∑n

k=1mk −1.Denote byAkj ∈ PN the fundamental polynomials of Hermite interpola-
tion at the nodesy1, y2, . . . , yn with the corresponding multiplicitym1,m2, . . . , mn. If mk − j ∈
N1 andj < i < mk, then

|Aki(x)|� j !
i! d

i−j
k |Akj (x)|, x ∈ R, (2.34)
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where

d1 =

{ |y1 − y2|, m2 > 1,
|y1 − y3|, m2 = 1,

dn =
{ |yn − yn−1|, mn−1 > 1,

|yn − yn−2|, mn−1 = 1,
dk = max{|yk − yk−1|, |yk − yk+1|}, 2�k�n − 1.

We formulate two elementary results which are needed later. To this end for eachn ∈ N let

−1 = x0n�x1n < · · · < xnn�xn+1,n = 1,

xkn = cos�kn, 0��kn��, k = 0, 1, . . . , n+ 1,

dkn = max{|xkn − xk−1,n|, |xkn − xk+1,n|}, k = 1,2, . . . , n,

and

�n(x) = (1− x2)1/2

n
+ 1

n2
.

Lemma 2.6. The following statements are equivalent.

(a) We have

�kn − �k+1,n� c1

n
, k = 0, 1, . . . , n. (2.35)

(b) We have

xk+1,n − xkn�c2�n(xkn), k = 0, 1, . . . , n. (2.36)

In addition,the following statements are equivalent.
(c) We have

�kn − �k+1,n� c1

n
, k = 0, 1, . . . , n. (2.37)

(d) We have

xk+1,n − xkn�c2�n(xkn), k = 0, 1, . . . , n. (2.38)

Moreover,if inequality(2.35)is true then

dkn�c�n(xkn), k = 1,2, . . . , n; (2.39)

if inequality(2.37)is true then

dkn�c�n(xkn), k = 1,2, . . . , n. (2.40)

Proof. Write

xk+1 − xk = cos�k+1 − cos�k

= 2 sin
�k − �k+1

2
sin

�k + �k+1

2
. (2.41)
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We have the estimations from above

sin
�k − �k+1

2
� �k − �k+1

2

and

sin
�k + �k+1

2
= sin

(
�k − �k − �k+1

2

)

= sin �k cos
�k − �k+1

2
− cos�k sin

�k − �k+1

2
� sin �k + �k − �k+1.

Inserting these estimations into (2.41), we obtain

xk+1 − xk�(�k − �k+1)(sin �k + �k − �k+1). (2.42)

On the other hand, we have the estimations from below

sin
�k − �k+1

2
� 1

�
(�k − �k+1),

sin
�k + �k+1

2
� 1

�
(�k + �k+1)�

1

2�
(�k + �k − �k+1)

� 1

2�
(sin �k + �k − �k+1) , �k + �k+1��

and

sin
�k + �k+1

2
� 1

�
[(� − �k) + (� − �k+1)]� 1

�
[sin(� − �k) + (�k − �k+1)]

= 1

�
(sin �k + �k − �k+1) , �k + �k+1 > �.

Inserting these estimations into (2.41), we obtain

xk+1 − xk� 1

�2
(�k − �k+1) (sin �k + �k − �k+1) . (2.43)

Then the equivalence of statements (a) and (b) as well as of statements (c) and (d) follows from
(2.42) and (2.43).
To prove the last part of the lemma by the same arguments as above we can obtain alternative

estimations

xk − xk−1�(�k−1 − �k)(sin �k + �k−1 − �k)

and

xk − xk−1� 1

�2
(�k−1 − �k) (sin �k + �k−1 − �k) ,

from which by (2.35), (2.37), (2.42), and (2.43) we obtain (2.39) and (2.40), respectively.
�
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Lemma 2.7. The following statements are equivalent.

(a) We have

c1

n
��kn − �k+1,n� c2

n
, k = 0, 1, . . . , n. (2.44)

(b) We have

c3�n(xkn)�xk+1,n − xkn�c4�n(xkn), k = 0, 1, . . . , n. (2.45)

(c) We have


c5(1−x21n)
1/2

n
�x1n − x0n� c6(1−x21n)

1/2

n
,

c5(1−x2kn)
1/2

n
�xk+1,n − xkn� c6(1−x2kn)

1/2

n
, k = 1,2, . . . , n.

(2.46)

Proof. (a)⇐⇒ (b) Apply Lemma2.6.
(b)⇐⇒ (c) We observe that the relation

x1 − x0 = 1+ x1 ∼ (1− x21)
1/2

n

(
or xn+1 − xn = 1− xn ∼ (1− x2n)

1/2

n

)

means thatx1 − x0 ∼ 1/n2 (or xn+1 − xn ∼ 1/n2). This shows that relation (2.45) with
k = 0 (or k = n) is equivalent to relation (2.46) withk = 0 (or k = n). Meanwhile for each
k, 1�k�n − 1,

�n(xk) ∼ (1− x2k )
1/2

n
,

because(1− x2k )
1/2� c

n
. This proves the equivalence of statements (b) and (c).�

Theorem 2.6. Letd� be a measure onR. Then forj ∈ M2 andi > j we have the estimation

|�in(d�,m; x)|�cdi−j�jn(d�,m; x), (2.47)

where

d =


max{|x − xk−1,n|, |x − xk+2,n|}, x ∈ [xkn, xk+1,n], 2�k�n − 2,
|x − x2n|, x�x1n,

|x − xn−2,n|, x�xnn.

(2.48)

Further, if d� is supported in[−1,1] and the condition
�kn − �k+1,n�c/n, k = 0, 1, . . . , n, (2.49)

is valid,wherexkn = cos�kn, 0��kn��, then

|�in(d�,m; x)|�c�n(x)
i−j�jn(d�,m; x),

x ∈ [−1,1] \ [(x1n, x2n) ∪ (xn−1,n, xnn)]. (2.50)

Proof. Let P ∈ P∗
n−1(x) satisfy (2.4) forj ∈ M2, wherex ∈ [xkn, xk+1,n], 2�k�n − 2. By

Theorem 2.4 the interval[xk−1, xk)must contain a zero ofP, say,y, and the interval(xk+1, xk+2]
must contain a zero ofP, say,z. Then by (1.8), (1.9), and (2.34)

|�in(d�,m; x)|�c(max{|x − y|, |x − z|})i−j�jn(d�,m; x)�cdi−j�jn(d�,m; x).
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If x�x1 then by Theorem2.4 the interval(−∞, x) contains no zero ofP and the interval
(x1, x2] must contain a zero ofP, say,y. Then by (1.8), (1.9), and (2.34)

|�in(d�,m; x)|�c|x − y|i−j�jn(d�,m; x)�cdi−j�jn(d�,m; x).
Similarly, if x�xn then we can obtain (2.47).
Relation (2.50) follows from (2.48) and (2.36).�

Remark 2.6. It is difficult togive theestimationof�in(d�,m; x) forx ∈ (x1n, x2n)∪(xn−1,n, xnn),
because in this case the numberdmay be large enough.
We state a useful result which is needed in the next section.

Theorem 2.7(Shi[8, Theorem 3]).Letd� be a measure onR. If m ∈ N2 then

�0n(d�,m; x)��mn/2(d�; x). (2.51)

3. Estimations and asymptotics

Lemma 3.1(Nevai[6, Lemma 6.3.8, p. 108]).Letv(x) = (1− x2)−1/2 and

Kn(v, x; t) = Tn(x)Tn−1(t) − Tn−1(x)Tn(t)

�(x − t)
, n�2. (3.1)

Then

|Kn(v, x; t)|�cmin

{
n,

(1− x2)1/2 + (1− t2)1/2

|x − t |
}
, x, t ∈ [−1,1], (3.2)

where c is an absolute constant.

Lemma 3.2(Freud[4, (3.7), p. 102; 104]).Let

�n−1(x; t) = Kn(v, x; t)
Kn(v, x; x) .

Then

|�n−1(x; t)|�4, n�3, x, t ∈ [−1,1], (3.3)

and

Kn(v, x; x) ∼ n, |x|�1. (3.4)

By [4, Theorem 3.1, p. 19] the polynomial�n−1(x; t) in t has simple real zeros only and hence

�n−1(x; ·) ∈ P∗
n−1(x). (3.5)

Lemma 3.3(Shi[10, Lemma 6]).We have

|bi(�n−1(x; ·); x)|�c�n(x)
−i , |x|�1, i = 0, 1, . . . . (3.6)
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Theorem 3.1. Letd� be a measure supported on[−1,1] and satisfy
� ∈ LipM�, 0< ��1. (3.7)

Then forj ∈ M2

�jn(d�,m; x)�cn2−m−��n(x)
2+j−m. (3.8)

Proof. Choose

P(x; t) = �n−1(x; t).
Using the definition of�jn(d�,m; x) and applying (1.6) and (2.1), we obtain

�jn(d�,m; x)
�

∫ 1

−1
|Aj(�n−1, x; t)| d�(t)

=
∫ 1

−1

∣∣∣∣∣∣
m−j−2∑
i=0

bi(�n−1, x; t)(t − x)j+i�n−1(x; t)m
∣∣∣∣∣∣ d�(t).

By (3.6), (3.2), and (3.4)

�jn(d�,m; x)

�c

m−j−2∑
i=0

�n(x)
−i

∫ 1

−1
|(t − x)j+i�n−1(x; t)m| d�(t)

= c

m−j−2∑
i=0

�n(x)
−i

∫ 1

−1

∣∣∣∣ (t − x)Kn(v, x; t)
Kn(v, x; x)

∣∣∣∣
j+i

|�n−1(x; t)|m−j−i d�(t)

�c

m−j−2∑
i=0

n−j−i�n(x)
−i

∫ 1

−1
|�n−1(x; t)|m−j−i d�(t). (3.9)

We have to estimate the integral

�q =
∫ 1

−1
|�n−1(x; t)|q d�(t), q�2.

We divide the integral�q into the three parts:

�q =
∫ x+1/n

x−1/n
|�n−1(x; t)|q d�(t) +

∫ x−1/n

−1
|�n−1(x; t)|q d�(t)

+
∫ 1

x+1/n
|�n−1(x; t)|q d�(t)

= S1 + S2 + S3.

It is simple to estimateS1, since by (3.3) and (3.7)

S1�22q+1Mn−�.
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If 1+x�1/n thenS2 = 0; otherwise applying (3.2), (3.4), and (3.7), and using partial integration,
we obtain

S2 � cn−q

∫ x−1/n

−1
(x − t)−q d�(t)

= cn−q

∫ x−1/n

−1
(x − t)−qd[�(t) − �(x)]

� cn−q

{
�(x) − �(−1)

(1+ x)q
+ qM

∫ x−1/n

−1
(x − t)�−q−1 dt

}

� cMn−q
{
(1+ x)�−q + q(q − �)−1nq−�

}
� cMn−�.

Similarly, if 1− x�1/n thenS3 = 0; otherwise

S3�cMn−�.

Thus�q �cn−� and by (3.9) we obtain (3.8).�

Theorem 3.2. Letd� be a measure supported on[−1,1] andj ∈ M2. Then

lim sup
n→∞

nj+1�jn(d�,m; x)�c�′(x)(1− x2)(j+1)/2 (3.10)

holds for almost everyx ∈ [−1,1].

Proof. By (3.9) and (3.2)–(3.4)

�jn(d�,m; x)

�c

m−j−2∑
i=0

�n(x)
−i

∫ 1

−1
|(t − x)j+i�n−1(x; t)m| d�(t)

�c

m−j−2∑
i=0

�n(x)
−i

∫ 1

−1

∣∣∣∣∣(t − x)j+i

[
Kn(v, x; t)
Kn(v, x; x)

]i+j+2
∣∣∣∣∣ d�(t)

�c

m−j−2∑
i=0

n−i−j−1�n(x)
−i

×�n(v; x)
∫ 1

−1
|(t − x)Kn(v, x; t)|i+jKn(v, x; t)2 d�(t)

�cn−j−1
m−j−2∑
i=0

[
n�n(x)

]−i

×�n(v; x)
∫ 1

−1

[
(1− x2)1/2 + (1− t2)1/2

]i+j

Kn(v, x; t)2 d�(t)
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= cn−j−1
m−j−2∑
i=0

[
n�n(x)

]−i
i+j∑
s=0

(
i + j

s

)
(1− x2)s/2

×�n(v; x)
∫ 1

−1
Kn(v, x; t)2(1− t2)(i+j−s)/2 d�(t)

or equivalently

nj+1�jn(d�,m; x)�c

m−j−2∑
i=0

[
n�n(x)

]−i
i+j∑
s=0

(
i + j

s

)
(1− x2)s/2

×�n(v; x)
∫ 1

−1
Kn(v, x; t)2(1− t2)(i+j−s)/2 d�(t).

Here we need a formula given by Nevai in[6, Lemma 6.2.32, p. 93]

lim
n→∞ �n(v; x)

∫ 1

−1
Kn(v, x; t)2 d�(t) = �′(x)(1− x2)1/2,

which holds for almost everyx ∈ [−1,1]. Hence for almost everyx ∈ [−1,1]
lim sup
n→∞

nj+1�jn(d�,m; x)

�c

m−j−2∑
i=0

(1− x2)−i/2
i+j∑
s=0

(
i + j

s

)
(1− x2)s/2(1− x2)(i+j−s)/2

×�′(x)(1− x2)1/2

�c�′(x)(1− x2)(j+1)/2. �

Lemma 3.4(Ullman [16, pp. 471–472]).Letd� be a measure supported on[−1,1].Then
lim
n→∞ �n(d�)

1/n = 2 (3.11)

if and only if

lim
n→∞

1

n

n∑
k=1

f (xkn(d�)) = 1

�

∫ 1

−1

f (x) dx√
1− x2

(3.12)

holds for everyf ∈ C[−1,1].

Lemma 3.5(Nevai[6, Lemma 5.1, p. 49]).Letd� be a measure with a compact support and let
f be continuous on�(d�) with the modulus of continuity	. Then∣∣∣∣∣

n∑
k=1

f (xkn) −
n−1∑
k=0

∫
R
f (x)Pk(d�; x)2 d�(x)

∣∣∣∣∣
�n	(n−1/3)

[
1+ 1

2
|�(d�)|3

]
(3.13)

holds forn > |�(d�)|−3, where|�(d�)| denotes the length of the interval�(d�).
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Lemma 3.6. Letd� be a measure supported on[−1,1] and let relation(3.11)prevail. Then
lim sup
n→∞

n�n(d�; x) = ��′(x)(1− x2)1/2 (3.14)

holds for almost everyx ∈ [−1,1].

Proof. Using the formula

�n(d�; x) =
[
n−1∑
k=0

Pk(d�; x)2
]−1

(3.15)

the inequality (3.13) becomes∣∣∣∣∣1n
n∑

k=1

f (xkn) −
n−1∑
k=0

∫
R

f (x)

n�n(d�; x) d�(x)
∣∣∣∣∣ �5	(n−1/3),

which, together with (3.12), implies that the relation

lim
n→∞

∫ 1

−1

f (x)

n�n(d�; x) dx = 1

�

∫ 1

−1

f (x) dx√
1− x2

(3.16)

holds for everyf ∈ C[−1,1]. Using one-sided approximation we conclude that relation (3.16)
remains true iff is the characteristic function of an interval. Then by the same argument as that
of Theorem 6.2.54 in [6, pp. 104–105] we obtain that relation

lim sup
n→∞

n�n(d�; x)���′(x)(1− x2)1/2

holds for almost everyx ∈ [−1,1]. By (3.10) we obtain (3.14). �

Remark 3.1. Lemma3.6 improvesTheorems6.2.54and6.2.55 in [6, pp. 104–105], there relation
(3.14) is proved for a measured� satisfying limn→∞ �n+1(d�)/�n(d�) = 2 and�′(x) > 0, a.e.,
respectively.

Corollary 3.1. Let d� be a measure supported on[−1,1] and let relation (3.11) prevail.
If m ∈ N2 then for almost everyx ∈ [−1,1]

2�

m
�′(x)(1− x2)1/2� lim sup

n→∞
n�0n(d�,m; x)�c�′(x)(1− x2)1/2.

Proof. This follows from (2.51), (3.14), and (3.10).�

In what follows we shall give an estimation of�jn(u,m; x) for a weight

u ∼ W, a.e., (3.17)

whereW is ageneralized Jacobi weight:

W(x)=
r∏

i=1

|x − ti |pi , |x| < 1, W(x) = 0, |x|�1,

−1= t1 < t2 < · · · < tr = 1 (r�2), pi > −1, i = 1,2, . . . , r. (3.18)
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Theorem 3.3. Let relation(3.17)prevail. Then with the constants associated with the symbol∼
depending on u and m,

�jn(u,m; x) ∼ �n(u; x)�n(x)
j ∼ 1

n
Wn(x)�n(x)

j , x ∈ [−1,1], j ∈ M2. (3.19)

Here

Wn(x)=
[
(1+ x)1/2 + 1

n

]2p1+1 [
(1− x)1/2 + 1

n

]2pr+1

×
r−1∏
i=2

[
|x − ti | + 1

n

]pi
. (3.20)

Proof. The relation (3.19) may be proved by the same argument as that of Theorem 1 in [11],
there this argument is applied to the case whenj ∈ M2 with m ∈ N2 and remains valid for
j ∈ M2 with m�2. �

Lemma 3.7(Shi[10, Lemma 8]).Letxkn = xkn(d�,m). Then

x1n < x1,n−1 < x2n < x2,n−1 < · · · < xn−1,n < xn−1,n−1 < xnn.

Lemma 3.8(Hardy [5, Theorem 27, pp. 71–72]).LetA,B, p�0 andAB + p > 0.Then

(A + B)p�c(p)(Ap + Bp). (3.21)

Lemma 3.9. Letb > a > 0 andd = (b − a)/h > 2.Then

(b − h)p − (a + h)p�c(bp − ap), (3.22)

where

c =


1, p�0,
(d−1)p−1

d
, 0< p < 1,

(d−2)(d−1)p

dp
, p�1.

(3.23)

Proof. Rewrite (3.22) in the form with� = h/a

[1+ (d − 1)�]p − (1+ �)p�c[(1+ d�)p − 1]. (3.24)

Forp�0 we have[1+ (d − 1)�]p�(1+ d�)p and(1+ �)p�1. Hence (3.24) withc = 1 is
valid.
Forp > 0 we consider the problem to minimize the function

g(�, c) = c (3.25)

subject to the condition

g1(�, c) = [1+ (d − 1)�]p − (1+ �)p − c[(1+ d�)p − 1]�0. (3.26)

If a pair {�, c} is a solution of this problem then according to Theorem 3.4 in[1] there is a pair
{�0, �1}, �0, �1�0, �0 + �1 > 0, such that

− �1
�g1
��

= 0, (3.27)
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�0 − �1
�g1
�c

= 0 (3.28)

and

�1g1 = 0. (3.29)

Eq. (3.28) shows that�1 > 0, for otherwise it would lead to�0 = �1 = 0, a contradiction. Thus
Eq. (3.27) yields

�g1
��

= 0,

that is,

(d − 1)[1+ (d − 1)�]p−1 − (1+ �)p−1 − cd[(1+ d�)]p−1 = 0.

This gives

c = (d − 1)[1+ (d − 1)�]p−1 − (1+ �)p−1

d[(1+ d�)]p−1
.

If 0 < p < 1 then

c � (d − 1)[(d − 1)+ (d − 1)�]p−1 − (1+ �)p−1

d[(1+ d�)]p−1

= (d − 1)p − 1

d

(
1+ �

1+ d�

)p−1

� (d − 1)p − 1

d
;

if p�1 then

c� d − 2

d

(
1+ (d − 1)�

1+ d�

)p−1

� d − 2

d

(
d − 1

d

)p−1

= (d − 2)(d − 1)p−1

dp
.

�

Lemma 3.10. Let−1�a < b�1 andd = (b − a)/h > 4.Let (3.17)prevail. Then∫ b−h

a+h

u(t) dt�c(u, d)

∫ b

a

u(t) dt. (3.30)

Proof. Put

� = d − 2

2d
min

1� i� r−1
(ti+1 − ti ) (3.31)

and

c1 =
[∫ 1

−1
u(t) dt

]−1

inf
−1�
�1−�

∫ 
+�



u(t) dt > 0. (3.32)

We separate the cases whenb − a − 2h�� andb − a − 2h < �.
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Case1: b − a − 2h��. In this case by (3.32)∫ b−h

a+h

u(t) dt � inf
−1�
�1−�

∫ 
+�



u(t) dt

� c1

∫ 1

−1
u(t) dt�c1

∫ b

a

u(t) dt.

Case2: b − a − 2h < �. In this case since

b − a − 2h = b − a − 2(b − a)

d
= (d − 2)(b − a)

d
,

by (3.31)

b − a <
1

2
min

1� i� r−1
(ti+1 − ti ).

This shows that the interval[a, b] contains at most one point ofti ’s. Assume that the index
i, 1� i�r, satisfies

min
t∈[a,b] |t − ti | = min

1� j � r
min
t∈[a,b] |t − tj |.

Again we separate the cases whenti ∈ [a, b] andti /∈ [a, b].
Case2.1: ti ∈ [a, b]. By calculation∫ b−h

a+h

u(t) dt�c

∫ b−h

a+h

|t − ti |pi dt

=




c
pi+1

[
(b − ti − h)pi+1 + (ti − a − h)pi+1

]
, ti ∈ (a + h, b − h),

c
pi+1

[
(b − ti − h)pi+1 − (a − ti + h)pi+1

]
, ti �a + h,

c
pi+1

[
(ti − a − h)pi+1 − (ti − b + h)pi+1

]
, ti �b − h.

On the other hand, we have∫ b

a

u(t) dt�c

∫ b

a

|t − ti |pi dt = c

pi + 1

[
(b − ti )

pi+1 + (ti − a)pi+1
]
.

For ti ∈ (a + h, b − h), using inequality (3.21), we see

(b − ti − h)pi+1 + (ti − a − h)pi+1�
(
b − a − 2h

2

)pi+1

=
[(

d − 2

2d

)
(b − a)

]pi+1

� 1

2

(
d − 2

2d

)pi+1 [
(b − ti )

pi+1 + (ti − a)pi+1
]
.

For (a�)ti �a + h, we have

1

h
[(b − ti ) − (ti − a)] � 1

h
[(b − a − h) − h] = d − 2> 2,

b − ti �b − a − h = (d − 1)h�(d − 1)(ti − a),
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and hence by (3.22)

(b − ti − h)pi+1 − (a − ti + h)pi+1

�(b − ti − h)pi+1 − (ti − a + h)pi+1

�c
[
(b − ti )

pi+1 − (ti − a)pi+1
]

� c[(d − 1)pi+1 − 1]
(d − 1)pi+1 + 1

[
(b − ti )

pi+1 + (ti − a)pi+1
]
.

Similarly, if ti �b − h, then

(ti − a − h)pi+1 − (ti − b + h)pi+1

� c[(d − 1)pi+1 − 1]
(d − 1)pi+1 + 1

[
(b − ti )

pi+1 + (ti − a)pi+1
]
.

Thus in all the cases inequality (3.30) follows.
Case2.2: ti /∈ [a, b]. Suppose without loss of generality thatti < a. Then∫ b−h

a+h

u(t) dt�c

∫ b−h

a+h

|t − ti |pi dt

= c

pi + 1

[
(b − ti − h)pi+1 − (a − ti + h)pi+1

]
and ∫ b

a

u(t) dt�c

∫ b

a

|t − ti |pi dt

= c

pi + 1

[
(b − ti )

pi+1 − (a − ti )
pi+1

]
.

Applying (3.22) we get (3.30). �

Lemma 3.11. If p�0, B > A�0,and� = ±1, then

(B + �A)(Bp + Ap)

Bp+1 + �Ap+1
�2. (3.33)

Proof. The inequality (3.33) with� = −1 may be found in [10, Lemma 5]; the one with� = 1
may be proved similarly. �

Lemma 3.12. Letp�0, Bn�An�0, � = ±1,and

B
p+1
n + �Ap+1

n � C

n

[(
Bn + 1

n

)p

+
(
An + 1

n

)p]
. (3.34)

Then

Bn + �An� c(C, p)

n
. (3.35)
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Proof. If An�1/n then by (3.34) and (3.21)

B
p+1
n � A

p
n

n
+ C

n

[(
Bn + 1

n

)p

+
(
An + 1

n

)p]

� 2C + 1

n

(
Bn + 1

n

)p

� (2C + 1)2p

n

[
B
p
n +

(
1

n

)p]
and hence

Bn + �An�2Bn� c

n
.

If An > 1/n then by (3.34)

B
p+1
n + �Ap+1

n � c

n

(
B
p
n + A

p
n

)
and hence by (3.33)

Bn + �An� c

n
· (Bn + �An)(B

p
n + A

p
n)

B
p+1
n + �Ap+1

n

� c

n
. �

Remark 3.1. Unfortunately, Lemma3.12 is not true in general for the case when−1 < p < 0,
although we need such a result later. For example, letAn = n−3/4, �n = n−1/4, andBn =
(1+ �n)2An. Then

B
1/2
n − A

1/2
n = �nA

1/2
n = �n(1+ �n)AnB

−1/2
n

� 2n−1B
−1/2
n �n−1(B

−1/2
n + A

−1/2
n )

� 2n−1

[(
Bn + 1

n

)−1/2

+
(
An + 1

n

)−1/2
]
,

which shows that inequality (3.34) is true. But inequality (3.35) is violated, because

Bn − An = 2�nAn + �2n�n−1/2.

Lemma 3.13(Shi[11, Lemma 2]).LetP ∈ Pn. Then
max|x|�1

∣∣P ′(x)Wn(x)�n(x)
∣∣ �cn max|x|�1

|P(x)Wn(x)| . (3.36)

Moreover,if (3.17)is true then

max|x|�1
|P(x)Wn(x)| �cn

∫ 1

−1
|P(x)|u(x) dx (3.37)

and ∫ 1

−1
|P ′(x)|(1− x2)1/2u(x) dx�cn

∫ 1

−1
|P(x)|u(x) dx, (3.38)

where�n(x) = (1− x2)1/2 + n−1 and c is a constant independent of n and P.

Lemma 3.14(Shi[11, Lemma 3]).Let yn = cos�n andzn = cos
n. If |�n − 
n|�C/n then
with the constants associated with the symbol∼ depending on w and C only

Wn(yn) ∼ Wn(zn). (3.39)
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Theorem 3.4. Letxkn = xkn(u,m) and let relation(3.17)with

pi �0, i = 2, 3, . . . , r − 1, (3.40)

prevail. Then the relation(2.44)is valid.

Proof. Theproof followsandproperlymodifies the ideasofNevai in [6, pp. 164–167].Meanwhile
according to Lemma 2.7 it is enough to prove (2.45).We use the notation%j = %jn(u,m) of (2.28)
and break the proof into two claims.

Claim 1.

xk+1 − xk�c�n(xk), k = 0, 1, . . . , n.

Choosen0 so large that forn�n0

max
0�k�n

(xk+1,n − xkn)�
1

2
min

1� j � r−1
(tj+1 − tj ).

For a fixed indexk, 0�k�n, assume that an indexi, 1� i�r, satisfies

min
t∈[xk,xk+1]

|t − ti | = min
1� j � r

min
t∈[xk,xk+1]

|t − tj |.

So the interval[xk, xk+1] contains no point oftj ’s except forti .
By Theorem2.3 it follows from (1.3) that∫ 1

−1
|Am−2(%j , xj ; t)|(1+ t)u(t) dt

=
∫ 1

−1
Am−2(%j , xj ; t)(1+ t)sgn[(t − xj )%j (u,m; t)]mu(t) dt

= [sgnP ′
n(u,m; xj )m]

∫ 1

−1
Am−2(%j , xj ; t)(1+ t)[sgnPn(u,m; t)m]u(t) dt

= [sgnP ′
n(u,m; xj )m]�j,m−2,n(u,m)(1+ xj )

= �m−2,n(u,m; xj )(1+ xj ). (3.41)

We need an Erd̋os–Turán inequality (%0 = %n+1) [3]

%k(t) + %k+1(t)�1, t ∈ [xk, xk+1], k = 0, 1, . . . , n,

from which it follows by (3.21) that

%k(t)
m + %k+1(t)

m�21−m[%k(t) + %k+1(t)]m�21−m, t ∈ [xk, xk+1],

k = 0, 1, . . . , n.
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Thus by (3.30)∫ 1

−1
|Am−2(%k, xk; t)|(1+ t)u(t) dt +

∫ 1

−1
|Am−2(%k+1, xk+1; t)|(1+ t)u(t) dt

� 1

(m − 2)!
(
xk+1 − xk

5

)m−2

×
∫ xk+1−(xk+1−xk)/5

xk+(xk+1−xk)/5

[
%k(t)

m + %k+1(t)
m
]
(1+ t)u(t) dt

�c(xk+1 − xk)
m−2

∫ xk+1−(xk+1−xk)/5

xk+(xk+1−xk)/5
(1+ t)u(t) dt

�c(xk+1 − xk)
m−2

∫ xk+1

xk

(1+ t)u(t) dt,

which, coupled with (3.41), gives

(xk+1 − xk)
m−2

∫ xk+1

xk

(1+ t)u(t) dt

�c[�m−2,n(u,m; xk)(1+ xk) + �m−2,n(u,m; xk+1)(1+ xk+1)]. (3.42)

If xk+1 − xk��n(xk) + �n(xk+1), then∣∣∣∣[(1− x2k+1)
1/2

]2 −
[
(1− x2k )

1/2
]2∣∣∣∣ = |x2k+1 − x2k |�2(xk+1 − xk)

� c

n

{[
(1− x2k+1)

1/2 + 1

n

]
+

[
(1− x2k )

1/2 + 1

n

]}
and hence by Lemma3.12

|�n(xk+1) − �n(xk)|� 1

n
|(1− x2k+1)

1/2 − (1− x2k )
1/2|� c

n2
.

So�n(xk+1)�c�n(xk) and

xk+1 − xk�c�n(xk).

If xk+1 − xk > �n(xk) + �n(xk+1), then using (3.19) inequality (3.42) gives∫ xk+1

xk

(1+ t)u(t) dt� c

n

[
Wn(xk)(1+ xk) + Wn(xk+1)(1+ xk+1)

]
or ∫ xk+1

xk

|t − ti |pi (1+ t) dt� c

n

[
Wn(xk)(1+ xk) + Wn(xk+1)(1+ xk+1)

]
. (3.43)

We distinguish the cases wheni ∈ {1, r} and 2� i�r − 1.
Case1: i ∈ {1, r}. It is enough to treat the case wheni = 1. In this case using (3.19) inequality

(3.43) yields

(1+ xk+1)
p1+2 − (1+ xk)

p1+2

� c

n

{[
(1+ xk+1)

1/2 + 1

n

]2p1+3

+
[
(1+ xk)

1/2 + 1

n

]2p1+3
}
.
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Again by Lemma3.12 we have

(1+ xk+1)
1/2 − (1+ xk)

1/2� c

n
.

Thus

xk+1 − xk =
[
(1+ xk+1)

1/2 + (1+ xk)
1/2

] [
(1+ xk+1)

1/2 − (1+ xk)
1/2

]
� c

n

[
(1+ xk+1)

1/2 + (1+ xk)
1/2

]
� c

n

[
(1+ xk)

1/2 + 1

n

]

� c

n

[
(1− x2k )

1/2 + 1

n

]
= c�n(xk).

Case2: 2� i�r − 1. In this case by (3.19) inequality (3.43) gives

c

n

[(
|ti − xk| + 1

n

)pi

+
(

|ti − xk+1| + 1

n

)pi
]

�
{ |ti − xk|pi+1 + |ti − xk+1|pi+1, ti ∈ [xk, xk+1],∣∣ |ti − xk|pi+1 − |ti − xk+1|pi+1

∣∣ , ti /∈ [xk, xk+1]. (3.44)

If ti ∈ [xk, xk+1] then by Lemma3.12 it follows from (3.44) that

xk+1 − xk = |ti − xk| + |ti − xk+1|� c

n
�c�n(xk).

If ti /∈ [xk, xk+1] then by Lemma3.12 it follows from (3.44) that

xk+1 − xk = | |ti − xk| − |ti − xk+1| |� c

n
�c�n(xk).

Claim 2. xk+1 − xk�c�n(xk), k = 0, 1, . . . , n.

Applying Lemma3.13 several times and using (3.19), we obtain

|A(m−1)
m−2 (%k, xk; x)|�mn(x)

m−1Wmn(x)

�cmn

∫ 1

−1
|A(m−1)

m−2 (%k, xk; t)|(1− t2)(m−1)/2u(t) dt

�c(mn)m
∫ 1

−1
|Am−2(%k, xk; t)|u(t) dt

= c(mn)m�m−2,n(u,m; xk)
�cnm−1Wn(xk)�n(xk)

m−2.

Thus it follows by Lemma 3.14 from Claim 1 that

|A(m−1)
m−2 (%k, xk; x)| � cnm−1Wn(xk)�n(xk)

m−2�mn(x)
1−mWmn(x)

−1

� c�n(xk)
−1, x ∈ [xk, xk+1].

But by the mean value theorem for the derivatives for some point� ∈ [xk, xk+1]
1=A

(m−2)
m−2 (%k, xk; xk) − A

(m−2)
m−2 (%k, xk; xk+1)

= (xk − xk+1)A
(m−1)
m−2 (%k, xk; �)�c(xk+1 − xk)�n(xk)

−1.
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Then

xk+1 − xk�c�n(xk). �

Remark 3.2. Theorem 9.20 in[6, pp. 164–165] and Theorem 2 in [11] are special cases of
Theorem3.4whenm = 2 andm ∈ N2 without the restriction (3.40), respectively. But their proofs
(the latter directly cites the former) are not suitable for the case whenpi < 0, 2� i�r − 1. It is
still open that if Theorem 3.4 remains true without this restriction.
As a consequence of Theorems 2.6, 3.3, and 3.4 we state the following.

Theorem 3.5. Let relation(3.17)with (3.40)prevail. Then forj ∈ M1 \ {0}
|�jn(u,m; x)|�c�n(u; x)�n(x)

j � c

n
Wn(x)�n(x)

j ,

x ∈ [−1,1] \ [(x1n, x2n) ∪ (xn−1,n, xnn)]. (3.45)

Theorem 3.6. Letm ∈ N2. Then relation(3.17)is equivalent to

c1

n
Wn(x)��0n(u,m; x)� c2

n
Wn(x). (3.46)

Proof. It suffices to show the implication (3.46)�⇒ (3.17). By (3.10) and (3.46)

u(x)(1− x2)1/2�c lim sup
n→∞

n�0n(u,m; x) = c(1− x2)1/2
r∏

i=1

|x − ti |pi ,

that is,

u(x)�c

r∏
i=1

|x − ti |pi .

Thus limn→∞ �n(u)
1/n = 2. Then applying Lemma3.6 and using (3.46), we obtain

u(x)�c

r∏
i=1

|x − ti |pi . �

For the Chebyshev weightv(x) Turán raised the following problem[15, p. 47]:

Problem 26. Give an explicit formula for�kjn(v,m) and determine its asymptotic behavior as
n → ∞.
The following theorem gives an answer to the same problem for a weightu ∼ W .

Theorem 3.7. If (3.17)with (3.40)is true,then,with the constants associated with the symbol∼
depending on u and m,{ [sgnP ′

n(u,m; xkn)m]�kjn(u,m) ∼ 1
n
Wn(xkn)�n(xkn)

j , j ∈ M2,

|�kjn(u,m)|� c
n
Wn(xkn)�n(xkn)

j , j ∈ M1 \ {0}. (3.47)

Proof. The first formula in (3.47) follows directly from (3.19) and (2.27); the second one follows
from the first one, (3.45), and (2.27).�
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